材料科学
钙长石
烧结
原材料
抗压强度
陶瓷
发泡剂
泡沫陶瓷
复合材料
矿物学
多孔性
有机化学
化学
作者
Fan Xia,Shicai Cui,Xipeng Pu
标识
DOI:10.1016/j.ceramint.2021.11.059
摘要
In this study, foam ceramics were prepared via a direct foaming method at high temperatures (1080–1120 °C), using red mud (RM) and K-feldspar washed waste (KFW) as the raw materials and SiC as the foaming agent, respectively. The chemical compositions and crystalline phases of the raw materials as well as the structural and mechanical properties of the foam ceramics were investigated. By adjusting the formulation and sintering process parameters, the porous structure of the foam ceramics could be effectively modulated. In addition to some residual crystalline phases in the raw materials, new phases, including rutile (TiO2) and anorthite (CaAl2Si2O8), were generated in foam ceramics. The compressive strength of the foam ceramics decreased with an increase in the KFW/RM ratio and sintering temperature, which was mainly related to the low density of the foam ceramics and the poor support of the pore walls to the structure. Among all the foam ceramics investigated, the foam ceramic with the KFW/RM ratio of 1:1, SiC content of 1 wt%, sintering temperature of 1100 °C and sintering time of 60 min showed the best overall performance with a bulk density, an apparent porosity, an average pore size and a compressive strength of 0.77 g/cm3, 61.89%, 0.52 mm, and 3.64 MPa, respectively. Its excellent porous structure and mechanical properties rendered it suitable for application as insulation materials or decorative materials for building partition walls.
科研通智能强力驱动
Strongly Powered by AbleSci AI