亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A systematic review of the automatic kidney segmentation methods in abdominal images

分割 计算机科学 豪斯多夫距离 人工智能 相似性(几何) 数据挖掘 放射科 医学 图像(数学)
作者
Mohit Pandey,Abhishek Gupta
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier BV]
卷期号:41 (4): 1601-1628 被引量:21
标识
DOI:10.1016/j.bbe.2021.10.006
摘要

The precise kidney segmentation is very helpful for diagnosis and treatment planning in urology, by giving information about malformation in the shape and size of the kidney. Kidney segmentation in abdominal computed tomography (CT) images provides support for the efficient and effortless detection of kidney tumors or cancers. Manual kidney segmentation is time-consuming and not reproducible. To overcome this problem, computer-aided automatic approach is used for kidney segmentation. The purpose of presenting this review paper is to analyze different automatic kidney segmentation methods in abdominal CT scans. PRISMA guidelines were used to conduct the systematic review. To acquire related articles, three online open source databases were used and a query was formed with relevant keywords. On the basis of inclusion and exclusion criteria, relevant papers were selected from the search results for finding answers to the four evolved research questions. The results reported in the different studies were analyzed based on the formulated research questions. The challenges of these studies were listed to overcome in the future. Many performance parameters representing the results like Hausdorff Distance (HD) and Dice Similarity Coefficient (DSC) were compared among the relevant studies. The systematic review article consists of the essence of the several computer-aided kidney segmentation methods using abdominal CT images, which are dedicated to answering the evolved research questions like various methods, accuracy, datasets size, various challenges, and the effect of pathological kidney on the performance of segmentation method had been discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
7秒前
量子星尘发布了新的文献求助10
7秒前
可爱的函函应助坚强白凝采纳,获得10
7秒前
11秒前
cheng发布了新的文献求助10
11秒前
18秒前
lzzj发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助30
27秒前
量子星尘发布了新的文献求助10
40秒前
cheng完成签到,获得积分10
42秒前
45秒前
量子星尘发布了新的文献求助10
52秒前
55秒前
忧伤的绍辉完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
ding应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
NexusExplorer应助X1x1A0Q1采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
X1x1A0Q1发布了新的文献求助10
2分钟前
2分钟前
桐桐应助lzzj采纳,获得10
2分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
lzzj发布了新的文献求助10
3分钟前
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666402
求助须知:如何正确求助?哪些是违规求助? 3225444
关于积分的说明 9762998
捐赠科研通 2935270
什么是DOI,文献DOI怎么找? 1607589
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188