废水
降级(电信)
化学
污水处理
臭氧
水处理
电晕放电
介质阻挡放电
流出物
化学工程
材料科学
灭菌(经济)
非热等离子体
作者
Gao Xiaoting,Huang Keliang,Ai Zhang,Wang Cihao,Zhuyu Sun,Yanan Liu
标识
DOI:10.1016/j.cej.2021.132845
摘要
Abstract Glucocorticoids (GCs) have drawn great concern due to their widespread contamination in the environment and application in treating patients with COVID-19. Due to the lack of data about GC removal using advanced treatment processes, a novel Paralleling and bubbling corona discharge reactor (PBCD) combined with iron-loaded activated-carbon fibre (Fe-ACF) was addressed in this study to degrade GCs represented by Hydrocortisone (HC) and Betamethasone (BT). The results showed that the PBCD-based system can degrade GCs effectively and can achieve effective sterilization. The removal rates of GCs were ranked as PBCD/Fe-ACF > PBCD/ACF > PBCD. The concentration of E. coli was reduced from 109 to 102 CFU/mL after 60 min of PBCD-based system treatment. The abundance of bacteria in actual Hospital wastewater (HWW) was significantly reduced. Plasma changed the physical and chemical properties of ACF and Fe-ACF by etching axial grooves and enhancing stretching vibrations of surface functional groups, thus promoting adsorption and catalytic degradation. For GC degradation, the functional reactive species were identified as •OH, 1O2, and •O2 radicals. Possible degradation pathways for HC and BT were proposed, which mainly included defluorination, keto acid decarboxylation, demethylation, intramolecular cyclization, cleavage and ester hydrolysis, indicating a reduction in GC toxicity. Since GCs are widely used in patients with COVID-19 and their wastewater needs to be sterilized simultaneously, the intensive and electrically driven PBCD-based system is promising in GC pollution control and sterilization in terminal water treatment facilities.
科研通智能强力驱动
Strongly Powered by AbleSci AI