Spatially variable model for extracting TIR anomalies before earthquakes: Application to Chinese Mainland

图表 地质学 期限(时间) 泊松分布 异常(物理) 地震学 遥感 统计 数学 物理 凝聚态物理 量子力学
作者
Ying Zhang,Qingyan Meng,Guy Ouillon,Didier Sornette,Weiyu Ma,Linlin Zhang,Jing Zhao,Yuan Qi,Fei Geng
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:267: 112720-112720 被引量:17
标识
DOI:10.1016/j.rse.2021.112720
摘要

There are several long-term statistical researches using the Molchan diagram (MD) to prove the relation between thermal infrared (TIR) anomalies and earthquakes in different regions, however, these studies are flawed: 1) the original MD is based on the spatially uniform Poisson model, but it will offer wrong evaluations for inhomogenous systems with uneven spatial-temporal distribution of earthquakes; 2) some of these studies have de-clustered earthquake catalogs before applying MD, however, de-clustering will introduce ambiguities to final scores and it may also conceal the potential relation between precursors and the 'removed' events. Until now, we have to admit that the long-term statistical evidence for proving the correspondence between earthquake and TIR anomalies is still absent and the power of TIR anomalies for predicting earthquakes is limited. In this study, we use daily nighttime Outgoing Longwave Radiation (OLR) data provided by the National Oceanic and Atmospheric Administration (NOAA) to extract the TIR anomalies of Chinese Mainland (20°-54°N, 73°-135°E). The data from Jan. 2007 to Dec. 2010 is the training dataset to obtain the best parameters for extracting TIR anomalies and the best time-distance-magnitude (TDM) windows for determining the correspondence between earthquakes and TIR anomalies, and the data from Jan. 2011 to Dec. 2017 is the testing dataset. The new 3D Molchan diagram offers a score for each model with different parameters. Unlike the original MD that only deals with the rate of missed events and the size of warning space, the 3D Molchan diagram quantifies the errors including false alarms and missed predictions. We assume that the best parameters and TDM windows are spatially variable for different sub-regions, because the Signal/Noise ratio is spatially variable due to the different geological and meteorological backgrounds. Moreover, we construct a new probability prediction model based on non-seismic binary alarms. Results show that the TIR anomalies is strongly related to normal or reverse earthquakes with magnitude≥ 4.0, and the TIR anomalies caused by earthquakes should be persistent in space and time. Moreover, the spatially variable model is superior to the global invariant one. We succeed in transforming the non-seismic binary alarms into probabilistic predictions based on the TIR anomalies and Relative Intensity index, which is defined as the rate of past earthquakes occurring in each spatial cell. Moreover, our new probabilistic model is superior to the spatially inhomogeneous Poisson model. However, this new probability model is still naïve and weak, and needs to be improved in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬发布了新的文献求助10
刚刚
科研通AI6应助结实的栾采纳,获得10
刚刚
AskNature完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
13完成签到,获得积分20
1秒前
2秒前
2秒前
358489228发布了新的文献求助10
2秒前
Xiao完成签到,获得积分10
2秒前
Katherine完成签到 ,获得积分10
3秒前
Akim应助细心的飞柏采纳,获得10
3秒前
3秒前
默默发布了新的文献求助10
3秒前
4秒前
酷波er应助DTS采纳,获得10
4秒前
lixue发布了新的文献求助10
5秒前
5秒前
游大侠完成签到,获得积分10
5秒前
岑岑完成签到 ,获得积分10
5秒前
虎啊虎啊发布了新的文献求助10
6秒前
6秒前
Sandewna完成签到,获得积分20
6秒前
科研通AI6应助航迹云采纳,获得10
7秒前
标致书易完成签到,获得积分10
7秒前
8秒前
8秒前
dyw发布了新的文献求助10
9秒前
wen发布了新的文献求助10
9秒前
ZQH发布了新的文献求助10
9秒前
张雪芹完成签到,获得积分10
10秒前
一二完成签到,获得积分20
11秒前
12秒前
活力的妙之完成签到 ,获得积分10
12秒前
Never stall发布了新的文献求助10
12秒前
13秒前
科研通AI6应助科研小尹采纳,获得10
13秒前
Ava应助灯灯采纳,获得10
14秒前
果果完成签到,获得积分10
15秒前
16秒前
魏笑白完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802