Spatially variable model for extracting TIR anomalies before earthquakes: Application to Chinese Mainland

图表 地质学 期限(时间) 泊松分布 异常(物理) 地震学 遥感 统计 数学 物理 凝聚态物理 量子力学
作者
Ying Zhang,Qingyan Meng,Guy Ouillon,Didier Sornette,Weiyu Ma,Linlin Zhang,Jing Zhao,Yuan Qi,Fei Geng
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:267: 112720-112720 被引量:17
标识
DOI:10.1016/j.rse.2021.112720
摘要

There are several long-term statistical researches using the Molchan diagram (MD) to prove the relation between thermal infrared (TIR) anomalies and earthquakes in different regions, however, these studies are flawed: 1) the original MD is based on the spatially uniform Poisson model, but it will offer wrong evaluations for inhomogenous systems with uneven spatial-temporal distribution of earthquakes; 2) some of these studies have de-clustered earthquake catalogs before applying MD, however, de-clustering will introduce ambiguities to final scores and it may also conceal the potential relation between precursors and the 'removed' events. Until now, we have to admit that the long-term statistical evidence for proving the correspondence between earthquake and TIR anomalies is still absent and the power of TIR anomalies for predicting earthquakes is limited. In this study, we use daily nighttime Outgoing Longwave Radiation (OLR) data provided by the National Oceanic and Atmospheric Administration (NOAA) to extract the TIR anomalies of Chinese Mainland (20°-54°N, 73°-135°E). The data from Jan. 2007 to Dec. 2010 is the training dataset to obtain the best parameters for extracting TIR anomalies and the best time-distance-magnitude (TDM) windows for determining the correspondence between earthquakes and TIR anomalies, and the data from Jan. 2011 to Dec. 2017 is the testing dataset. The new 3D Molchan diagram offers a score for each model with different parameters. Unlike the original MD that only deals with the rate of missed events and the size of warning space, the 3D Molchan diagram quantifies the errors including false alarms and missed predictions. We assume that the best parameters and TDM windows are spatially variable for different sub-regions, because the Signal/Noise ratio is spatially variable due to the different geological and meteorological backgrounds. Moreover, we construct a new probability prediction model based on non-seismic binary alarms. Results show that the TIR anomalies is strongly related to normal or reverse earthquakes with magnitude≥ 4.0, and the TIR anomalies caused by earthquakes should be persistent in space and time. Moreover, the spatially variable model is superior to the global invariant one. We succeed in transforming the non-seismic binary alarms into probabilistic predictions based on the TIR anomalies and Relative Intensity index, which is defined as the rate of past earthquakes occurring in each spatial cell. Moreover, our new probabilistic model is superior to the spatially inhomogeneous Poisson model. However, this new probability model is still naïve and weak, and needs to be improved in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小T儿发布了新的文献求助10
刚刚
852应助woxiangbiye采纳,获得10
刚刚
飞羽完成签到,获得积分10
1秒前
Owen应助cherry采纳,获得10
1秒前
坚定的老六完成签到,获得积分10
1秒前
协和_子鱼完成签到,获得积分0
1秒前
2秒前
Hyde完成签到,获得积分10
3秒前
小南孩完成签到,获得积分10
3秒前
3秒前
4秒前
研友_VZG7GZ应助keyancui采纳,获得10
4秒前
康康完成签到 ,获得积分10
5秒前
英姑应助毕业就好采纳,获得10
5秒前
虚心的迎荷完成签到,获得积分10
5秒前
脑洞疼应助少侠不是菜鸟采纳,获得10
5秒前
5秒前
祝雲完成签到,获得积分10
5秒前
新的心跳发布了新的文献求助10
5秒前
壹拾柒完成签到,获得积分10
6秒前
6秒前
6秒前
mimi发布了新的文献求助10
6秒前
呆呆完成签到,获得积分10
7秒前
blebui应助姜茶采纳,获得10
7秒前
幼稚园小新完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
8秒前
snowball完成签到,获得积分10
8秒前
9秒前
duoduozs发布了新的文献求助10
9秒前
velpro完成签到,获得积分10
9秒前
qqqq完成签到,获得积分10
9秒前
10秒前
10秒前
溪风完成签到,获得积分10
10秒前
ting发布了新的文献求助10
11秒前
12秒前
Xxxnnian发布了新的文献求助30
12秒前
听风暖完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672