Ferroptosis-related lncRNA pairs to predict the clinical outcome and molecular characteristics of pancreatic ductal adenocarcinoma

胰腺癌 癌症研究 肿瘤微环境 内科学 免疫疗法 癌症 肿瘤科 医学 生物信息学 胰腺导管腺癌 生物 计算生物学
作者
Rong Tang,Zijian Wu,Zeyin Rong,Jin Xu,Wei Wang,Bo Zhang,Xianjun Yu,Si Shi
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:44
标识
DOI:10.1093/bib/bbab388
摘要

Ferroptosis is a form of regulated cell death initiated by oxidative perturbations that can be blocked by iron chelators and lipophilic antioxidants, and ferroptosis may be the silver bullet treatment for multiple cancers, including immunotherapy- and chemotherapy-insensitive cancers such as pancreatic ductal adenocarcinoma (PDAC). Numerous studies have noted that long non-coding RNAs (lncRNAs) regulate the biological behaviour of cancer cells by binding to DNA, RNA and protein. However, few studies have reported the role of lncRNAs in ferroptosis processes and the function of ferroptosis-associated lncRNAs. The primary objective of the present study was to identify ferroptosis-related lncRNAs using bioinformatic approaches combined with experimental validation. The second objective was to construct a prognostic model to predict the overall survival of patients with PDAC. The present study identified ferroptosis-related lncRNAs using a bioinformatic approach and validated them in an independent pancreatic cancer cohort from Fudan University Shanghai Cancer Center. The lncRNA SLCO4A1-AS1 was identified as a novel molecule mediating ferroptosis resistance in vitro. A novel algorithm was used to construct a '0 or 1' matrix-based prognosis model, which showed promising diagnostic accuracy for potential clinical translation (area under the curve = 0.89 for the 2-year survival rate). Notably, molecular subtypes classified by the risk scores of the model did not belong to any previously reported subtypes of PDAC. The immune microenvironment, metabolic activities, mutation landscape and ferroptosis sensitivity were significantly distinct between patients with different risk scores. Sensitivity (IC50) to 30 common anticancer drugs was analysed between patients with different risks, and imatinib and axitinib were found to be potential drugs for the treatment of patients with lower risk scores. Overall, we developed an accurate prognostic model based on the expression patterns of ferroptosis lncRNAs, which may contribute greatly to the evaluation of patient prognosis, molecular characteristics and treatment modalities and could be further translated into clinical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OvO完成签到,获得积分10
1秒前
暴躁的冬菱完成签到,获得积分10
1秒前
hah发布了新的文献求助10
2秒前
佐伊完成签到 ,获得积分10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
花轻完成签到,获得积分10
2秒前
Mic应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
Zx_1993应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
杨拿铁完成签到,获得积分10
3秒前
Mic应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
tangtang应助科研通管家采纳,获得10
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
3秒前
阔达蓝血发布了新的文献求助30
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
玄风应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
玄风应助科研通管家采纳,获得10
4秒前
木桃完成签到,获得积分10
4秒前
ddd完成签到,获得积分20
5秒前
慕青应助学习要认真喽采纳,获得10
5秒前
哦哦哦发布了新的文献求助30
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505663
求助须知:如何正确求助?哪些是违规求助? 4601332
关于积分的说明 14476017
捐赠科研通 4535251
什么是DOI,文献DOI怎么找? 2485257
邀请新用户注册赠送积分活动 1468282
关于科研通互助平台的介绍 1440744