亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A risk classification system predicting the cancer-specific survival for postoperative stage IB non-small-cell lung cancer patients without lymphovascular and visceral pleural invasion

医学 淋巴血管侵犯 肿瘤科 内科学 肺癌 癌症分期 阶段(地层学) 癌症 转移 生物 古生物学
作者
Zegui Tu,Caili Li,Tian Tian,Qian Chen
出处
期刊:Lung Cancer [Elsevier BV]
卷期号:161: 114-121 被引量:9
标识
DOI:10.1016/j.lungcan.2021.09.014
摘要

Background This study aims to formulate a risk classification system predicting the cancer-specific survival (CSS) for postoperative stage IB NSCLC patients without lymphovascular (LVI) and visceral pleural (VPI) invasion to guide treatment decision making and assist patient counseling. Method A total of 4,238 patients were included in this study. Patients were randomly divided into training and validation cohorts (7:3). The risk factors were identified by Cox regression. Concordance index (C-index), calibration curves, and Decision Curve Analyses (DCAs) were used to evaluate the performance of nomogram. We applied X-tile to calculate the optimal cut-off points and develop a risk classification system. The Kaplan-Meier method was conducted to evaluate CSS in different risk groups, and the significance was evaluated by log-rank test. Result Among the 4,238 patients, 1,014(23.9%) suffered cancer-specific death. In the training cohort, univariable and multivariable Cox regression analyses revealed that age, gender, pathological subtype, grade, tumor size, the number of removed lymph nodes and surgical type were significantly associated with CSS. According to these results, the nomogram was formulated. The C-index of the prediction model was 0.755 in the training cohort (95%CI: 0.733–0.777) and 0.726 (95%CI: 0.695–0.757) in the validation cohort. The calibration curves in training and validation cohort exhibited good agreement between the predictions and actual observations. The Decision Curve Analyses (DCAs) showed net benefit can be achieved for nomogram. A risk classification system was further constructed that could perfectly classify patients into three risk groups. Conclusion In this study, we constructed a nomogram to support individualized evaluation of CSS and a risk classification system to identify patients in the different risk groups in stage IB NSCLC patients without LVI and VPI. These tools could be useful in guiding treatment decision making and assisting patient counseling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助寒冷苗条采纳,获得30
4秒前
糖伯虎完成签到 ,获得积分10
24秒前
35秒前
556发布了新的文献求助10
38秒前
48秒前
Djnsbj发布了新的文献求助10
51秒前
寒冷苗条发布了新的文献求助30
54秒前
霖铃完成签到,获得积分20
1分钟前
wanci应助Djnsbj采纳,获得10
1分钟前
Ava应助Djnsbj采纳,获得10
1分钟前
脑洞疼应助sk4ajd采纳,获得30
1分钟前
1分钟前
sk4ajd发布了新的文献求助30
1分钟前
爆米花应助sk4ajd采纳,获得30
1分钟前
2分钟前
疯狂的白昼完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
sk4ajd发布了新的文献求助30
2分钟前
NinG发布了新的文献求助10
2分钟前
李健应助疯狂的白昼采纳,获得10
2分钟前
泡泡完成签到,获得积分10
2分钟前
sk4ajd完成签到,获得积分10
2分钟前
3分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
科研通AI5应助NinG采纳,获得10
3分钟前
zcydbttj2011完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
符聪发布了新的文献求助10
3分钟前
3分钟前
SOBER发布了新的文献求助10
3分钟前
我是老大应助符聪采纳,获得10
4分钟前
Djnsbj发布了新的文献求助10
4分钟前
qqq完成签到,获得积分10
4分钟前
SOBER完成签到,获得积分10
4分钟前
旺仔先生完成签到 ,获得积分10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155648
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214