A risk classification system predicting the cancer-specific survival for postoperative stage IB non-small-cell lung cancer patients without lymphovascular and visceral pleural invasion

医学 淋巴血管侵犯 肿瘤科 内科学 肺癌 癌症分期 阶段(地层学) 癌症 转移 生物 古生物学
作者
Zegui Tu,Caili Li,Tian Tian,Qian Chen
出处
期刊:Lung Cancer [Elsevier]
卷期号:161: 114-121 被引量:9
标识
DOI:10.1016/j.lungcan.2021.09.014
摘要

Background This study aims to formulate a risk classification system predicting the cancer-specific survival (CSS) for postoperative stage IB NSCLC patients without lymphovascular (LVI) and visceral pleural (VPI) invasion to guide treatment decision making and assist patient counseling. Method A total of 4,238 patients were included in this study. Patients were randomly divided into training and validation cohorts (7:3). The risk factors were identified by Cox regression. Concordance index (C-index), calibration curves, and Decision Curve Analyses (DCAs) were used to evaluate the performance of nomogram. We applied X-tile to calculate the optimal cut-off points and develop a risk classification system. The Kaplan-Meier method was conducted to evaluate CSS in different risk groups, and the significance was evaluated by log-rank test. Result Among the 4,238 patients, 1,014(23.9%) suffered cancer-specific death. In the training cohort, univariable and multivariable Cox regression analyses revealed that age, gender, pathological subtype, grade, tumor size, the number of removed lymph nodes and surgical type were significantly associated with CSS. According to these results, the nomogram was formulated. The C-index of the prediction model was 0.755 in the training cohort (95%CI: 0.733–0.777) and 0.726 (95%CI: 0.695–0.757) in the validation cohort. The calibration curves in training and validation cohort exhibited good agreement between the predictions and actual observations. The Decision Curve Analyses (DCAs) showed net benefit can be achieved for nomogram. A risk classification system was further constructed that could perfectly classify patients into three risk groups. Conclusion In this study, we constructed a nomogram to support individualized evaluation of CSS and a risk classification system to identify patients in the different risk groups in stage IB NSCLC patients without LVI and VPI. These tools could be useful in guiding treatment decision making and assisting patient counseling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
言午完成签到,获得积分10
2秒前
Chen272完成签到,获得积分10
2秒前
3秒前
3秒前
快乐的凡霜完成签到,获得积分10
3秒前
tudios完成签到,获得积分10
3秒前
weishuhan完成签到,获得积分10
4秒前
万能图书馆应助leeOOO采纳,获得10
4秒前
whisper80完成签到,获得积分10
5秒前
Doc.Wang完成签到,获得积分20
7秒前
wangyq2024关注了科研通微信公众号
8秒前
852应助王富贵采纳,获得10
8秒前
邪帝完成签到,获得积分10
8秒前
NexusExplorer应助Frida采纳,获得10
8秒前
草叶叶完成签到,获得积分10
9秒前
齐桓公发布了新的文献求助10
9秒前
tjy发布了新的文献求助10
10秒前
yu完成签到 ,获得积分10
10秒前
Dean完成签到 ,获得积分10
12秒前
陈陈完成签到,获得积分10
12秒前
king完成签到,获得积分10
12秒前
希望天下0贩的0应助Doc.Wang采纳,获得10
12秒前
茹茹完成签到 ,获得积分10
13秒前
zhangwansen完成签到,获得积分10
14秒前
15秒前
16秒前
tjy完成签到,获得积分20
16秒前
秋语芙完成签到,获得积分10
19秒前
Frida发布了新的文献求助10
21秒前
leeOOO发布了新的文献求助10
22秒前
C洛7完成签到,获得积分10
24秒前
26秒前
与淇完成签到,获得积分10
28秒前
111完成签到,获得积分10
30秒前
王富贵发布了新的文献求助10
32秒前
32秒前
乘风完成签到,获得积分10
33秒前
Q17完成签到 ,获得积分10
33秒前
黄伊若发布了新的文献求助10
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149387
求助须知:如何正确求助?哪些是违规求助? 2800406
关于积分的说明 7840028
捐赠科研通 2458019
什么是DOI,文献DOI怎么找? 1308162
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706