Estimating concentrations for particle and gases in a mechanically ventilated building in Hong Kong: multivariate method and machine learning

计算机科学 统计 人工智能 环境科学 机器学习 多元统计 预测建模
作者
Wenwei Che,Alison T.Y. Li,Alexis K.H. Lau
出处
期刊:Air Quality, Atmosphere & Health [Springer Science+Business Media]
卷期号:: 1-18
标识
DOI:10.1007/s11869-021-01093-9
摘要

Lack of characterization of indoor pollutant concentrations has been identified as a key barrier for exposure and health estimates. In this study, a field campaign was conducted to measure indoor concentrations of PM1, PM2.5, PM10, CO, and NO2 in a mechanically ventilated building. Statistical method using multivariate linear regression (MLR) and machine learning using random forest (RF) were used and compared to quantify variations in observed concentrations and were then used to predict indoor concentrations for selected pollutants. The two methods were consistent in identifying major predictors for each pollutant. Outdoor particles were the single largest predictors found for PM1 and PM2.5, while indoor environment and occupant-related variables were dominant predictors for PM10, CO, and NO2 in the selected mall. Based on MLR models, outdoor PM accounted for 91%, 64%, and 25% of variations in indoor PM1, PM2.5, and PM10 during opening hours. More than 30% of indoor CO variations were related to time-dependent activities. Nearly 50% of the indoor NO2 variations were explained by temperature and relative humidity. Both models are useful in predicting indoor concentrations. In the tenfold cross validation, RF models showed high prediction capability for PM1 (R2 > 0.9) and moderate (R2: 0.5 ~ 0.7) for the other four pollutants in both periods except for PM10 during non-opening hours (R2 = 0.3). MLR models exhibited comparable prediction power for PM1 and PM2.5, but generally lower for PM10 and gases. Availability of parameter information in modern cities facilitates the application of such models on large scale, based on proper validation, for better characterizing of indoor air quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呜呼啦呼完成签到 ,获得积分10
刚刚
王智慧完成签到,获得积分10
1秒前
1秒前
啦啦啦l应助迷路的蛋挞采纳,获得10
1秒前
高兴的海亦完成签到,获得积分10
1秒前
番茄杀手发布了新的文献求助10
3秒前
香精完成签到,获得积分10
3秒前
越红完成签到,获得积分10
3秒前
3秒前
sds完成签到,获得积分10
3秒前
张起灵完成签到,获得积分10
3秒前
TINA完成签到,获得积分10
3秒前
3秒前
啵啵完成签到,获得积分10
3秒前
inzaghi发布了新的文献求助10
4秒前
4秒前
GaoZz完成签到,获得积分10
4秒前
5秒前
5秒前
jay2000发布了新的文献求助20
6秒前
6秒前
啊啊啊完成签到,获得积分10
7秒前
7秒前
开心友儿完成签到,获得积分10
8秒前
xuexi发布了新的文献求助10
8秒前
我是老大应助标致惋庭采纳,获得10
8秒前
Aurora完成签到,获得积分10
9秒前
jack发布了新的文献求助10
9秒前
傲娇如天发布了新的文献求助10
10秒前
12完成签到,获得积分10
10秒前
英俊的铭应助Fufu采纳,获得10
11秒前
乐观的鸽子完成签到,获得积分10
11秒前
Sylvia0528发布了新的文献求助10
11秒前
顾矜应助灵均采纳,获得10
12秒前
12秒前
12秒前
12秒前
默默安双发布了新的文献求助10
12秒前
没错给没错的求助进行了留言
13秒前
Adrenaline完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954042
求助须知:如何正确求助?哪些是违规求助? 3500003
关于积分的说明 11097832
捐赠科研通 3230521
什么是DOI,文献DOI怎么找? 1785972
邀请新用户注册赠送积分活动 869759
科研通“疑难数据库(出版商)”最低求助积分说明 801583