Estimating concentrations for particle and gases in a mechanically ventilated building in Hong Kong: multivariate method and machine learning

计算机科学 统计 人工智能 环境科学 机器学习 多元统计 预测建模
作者
Wenwei Che,Alison T.Y. Li,Alexis K.H. Lau
出处
期刊:Air Quality, Atmosphere & Health [Springer Nature]
卷期号:: 1-18
标识
DOI:10.1007/s11869-021-01093-9
摘要

Lack of characterization of indoor pollutant concentrations has been identified as a key barrier for exposure and health estimates. In this study, a field campaign was conducted to measure indoor concentrations of PM1, PM2.5, PM10, CO, and NO2 in a mechanically ventilated building. Statistical method using multivariate linear regression (MLR) and machine learning using random forest (RF) were used and compared to quantify variations in observed concentrations and were then used to predict indoor concentrations for selected pollutants. The two methods were consistent in identifying major predictors for each pollutant. Outdoor particles were the single largest predictors found for PM1 and PM2.5, while indoor environment and occupant-related variables were dominant predictors for PM10, CO, and NO2 in the selected mall. Based on MLR models, outdoor PM accounted for 91%, 64%, and 25% of variations in indoor PM1, PM2.5, and PM10 during opening hours. More than 30% of indoor CO variations were related to time-dependent activities. Nearly 50% of the indoor NO2 variations were explained by temperature and relative humidity. Both models are useful in predicting indoor concentrations. In the tenfold cross validation, RF models showed high prediction capability for PM1 (R2 > 0.9) and moderate (R2: 0.5 ~ 0.7) for the other four pollutants in both periods except for PM10 during non-opening hours (R2 = 0.3). MLR models exhibited comparable prediction power for PM1 and PM2.5, but generally lower for PM10 and gases. Availability of parameter information in modern cities facilitates the application of such models on large scale, based on proper validation, for better characterizing of indoor air quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻代真发布了新的文献求助10
刚刚
mrmrer完成签到,获得积分20
刚刚
刚刚
刚刚
毛慢慢发布了新的文献求助10
1秒前
1秒前
今天不学习明天变垃圾完成签到,获得积分10
1秒前
2秒前
2秒前
布布完成签到,获得积分10
3秒前
一独白发布了新的文献求助10
3秒前
周周完成签到 ,获得积分10
3秒前
淡然完成签到,获得积分10
4秒前
明理小土豆完成签到,获得积分10
4秒前
刘国建郭菱香完成签到,获得积分10
4秒前
嘤嘤嘤完成签到,获得积分10
4秒前
九川应助粱自中采纳,获得10
4秒前
无辜之卉完成签到,获得积分10
5秒前
无花果应助Island采纳,获得10
5秒前
5秒前
SHDeathlock发布了新的文献求助200
6秒前
Owen应助醒醒采纳,获得10
6秒前
无心的代桃完成签到,获得积分10
7秒前
追寻代真完成签到,获得积分10
7秒前
晓兴兴完成签到,获得积分10
7秒前
leon发布了新的文献求助10
8秒前
洽洽瓜子shine完成签到,获得积分10
8秒前
简单的大白菜真实的钥匙完成签到,获得积分10
9秒前
10秒前
一独白完成签到,获得积分10
11秒前
在水一方应助坚强的樱采纳,获得10
11秒前
慕青应助尼亚吉拉采纳,获得10
12秒前
快乐小白菜应助甜酱采纳,获得10
12秒前
12秒前
qq应助毛慢慢采纳,获得10
13秒前
13秒前
科研通AI5应助吴岳采纳,获得10
13秒前
天天快乐应助ufuon采纳,获得10
14秒前
科研通AI5应助一独白采纳,获得10
15秒前
hearts_j完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762