Estimating concentrations for particle and gases in a mechanically ventilated building in Hong Kong: multivariate method and machine learning

计算机科学 统计 人工智能 环境科学 机器学习 多元统计 预测建模
作者
Wenwei Che,Alison T.Y. Li,Alexis K.H. Lau
出处
期刊:Air Quality, Atmosphere & Health [Springer Nature]
卷期号:: 1-18
标识
DOI:10.1007/s11869-021-01093-9
摘要

Lack of characterization of indoor pollutant concentrations has been identified as a key barrier for exposure and health estimates. In this study, a field campaign was conducted to measure indoor concentrations of PM1, PM2.5, PM10, CO, and NO2 in a mechanically ventilated building. Statistical method using multivariate linear regression (MLR) and machine learning using random forest (RF) were used and compared to quantify variations in observed concentrations and were then used to predict indoor concentrations for selected pollutants. The two methods were consistent in identifying major predictors for each pollutant. Outdoor particles were the single largest predictors found for PM1 and PM2.5, while indoor environment and occupant-related variables were dominant predictors for PM10, CO, and NO2 in the selected mall. Based on MLR models, outdoor PM accounted for 91%, 64%, and 25% of variations in indoor PM1, PM2.5, and PM10 during opening hours. More than 30% of indoor CO variations were related to time-dependent activities. Nearly 50% of the indoor NO2 variations were explained by temperature and relative humidity. Both models are useful in predicting indoor concentrations. In the tenfold cross validation, RF models showed high prediction capability for PM1 (R2 > 0.9) and moderate (R2: 0.5 ~ 0.7) for the other four pollutants in both periods except for PM10 during non-opening hours (R2 = 0.3). MLR models exhibited comparable prediction power for PM1 and PM2.5, but generally lower for PM10 and gases. Availability of parameter information in modern cities facilitates the application of such models on large scale, based on proper validation, for better characterizing of indoor air quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DY完成签到,获得积分10
1秒前
1秒前
脑洞疼应助iuv采纳,获得10
2秒前
5秒前
JIANGCHUNYAN完成签到,获得积分10
5秒前
A吞完成签到,获得积分20
8秒前
JIANGCHUNYAN发布了新的文献求助10
10秒前
JamesPei应助兴奋悟空采纳,获得10
10秒前
11秒前
香蕉觅云应助苏满天采纳,获得30
12秒前
祎祎完成签到,获得积分10
13秒前
13秒前
在鹿特丹完成签到 ,获得积分10
14秒前
venger完成签到,获得积分10
14秒前
ccccc1998发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
iuv发布了新的文献求助10
18秒前
aaaa完成签到,获得积分10
19秒前
zhangqin完成签到,获得积分10
20秒前
苏满天发布了新的文献求助30
22秒前
22秒前
zhangqin发布了新的文献求助10
23秒前
24秒前
Singularity应助圆圆采纳,获得10
24秒前
鹿不可完成签到,获得积分10
24秒前
椿翊给椿翊的求助进行了留言
25秒前
ding应助天真芷云采纳,获得10
26秒前
27秒前
Grace发布了新的文献求助10
28秒前
Admin发布了新的文献求助10
29秒前
32秒前
34秒前
欢呼冬瓜完成签到 ,获得积分10
34秒前
不安青牛应助Admin采纳,获得10
36秒前
36秒前
haikuotian发布了新的文献求助10
37秒前
善学以致用应助xsq86采纳,获得10
38秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161703
求助须知:如何正确求助?哪些是违规求助? 2812994
关于积分的说明 7898049
捐赠科研通 2471906
什么是DOI,文献DOI怎么找? 1316269
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129