Markov state modeling of membrane transport proteins

马尔可夫链 分子动力学 膜蛋白 功能(生物学) 马尔可夫模型 膜转运蛋白 膜转运 生物系统 蛋白质折叠 化学 生物物理学 计算机科学 计算生物学 生物 计算化学 机器学习 生物化学 进化生物学
作者
Matthew C. Chan,Diwakar Shukla
出处
期刊:Journal of Structural Biology [Elsevier]
卷期号:213 (4): 107800-107800 被引量:18
标识
DOI:10.1016/j.jsb.2021.107800
摘要

The flux of ions and molecules in and out of the cell is vital for maintaining the basis of various biological processes. The permeation of substrates across the cellular membrane is mediated through the function of specialized integral membrane proteins commonly known as membrane transporters. These proteins undergo a series of structural rearrangements that allow a primary substrate binding site to be accessed from either side of the membrane at a given time. Structural insights provided by experimentally resolved structures of membrane transporters have aided in the biophysical characterization of these important molecular drug targets. However, characterizing the transitions between conformational states remains challenging to achieve both experimentally and computationally. Though molecular dynamics simulations are a powerful approach to provide atomistic resolution of protein dynamics, a recurring challenge is its ability to efficiently obtain relevant timescales of large conformational transitions as exhibited in transporters. One approach to overcome this difficulty is to adaptively guide the simulation to favor exploration of the conformational landscape, otherwise known as adaptive sampling. Furthermore, such sampling is greatly benefited by the statistical analysis of Markov state models. Historically, the use of Markov state models has been effective in quantifying slow dynamics or long timescale behaviors such as protein folding. Here, we review recent implementations of adaptive sampling and Markov state models to not only address current limitations of molecular dynamics simulations, but to also highlight how Markov state modeling can be applied to investigate the structure-function mechanisms of large, complex membrane transporters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姗姗发布了新的文献求助10
刚刚
加油完成签到,获得积分10
刚刚
CZJ完成签到,获得积分10
1秒前
MRD发布了新的文献求助10
1秒前
1秒前
不爱吃米饭完成签到,获得积分10
1秒前
我要发sci完成签到,获得积分10
2秒前
2秒前
Lucifer完成签到 ,获得积分10
2秒前
结实的世倌完成签到,获得积分20
3秒前
冒着大风前行完成签到,获得积分20
3秒前
4秒前
慕青应助合适朋友采纳,获得10
4秒前
涵泽发布了新的文献求助10
4秒前
4秒前
QianQianONE发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
hulahula完成签到,获得积分10
8秒前
8秒前
dawei发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
无花果应助kepwake采纳,获得10
9秒前
9秒前
EvaHo完成签到,获得积分10
9秒前
10秒前
LEI发布了新的文献求助10
10秒前
汉堡包应助Yashyi采纳,获得10
11秒前
hohokuz发布了新的文献求助10
11秒前
子车茗应助PhDL1采纳,获得20
12秒前
顾矜应助橘涂采纳,获得10
12秒前
易安发布了新的文献求助10
12秒前
最落幕完成签到 ,获得积分10
12秒前
映城发布了新的文献求助50
13秒前
Daisy完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594565
求助须知:如何正确求助?哪些是违规求助? 4680238
关于积分的说明 14813737
捐赠科研通 4647610
什么是DOI,文献DOI怎么找? 2535063
邀请新用户注册赠送积分活动 1503074
关于科研通互助平台的介绍 1469521