Markov state modeling of membrane transport proteins

马尔可夫链 分子动力学 膜蛋白 功能(生物学) 马尔可夫模型 膜转运蛋白 膜转运 生物系统 蛋白质折叠 化学 生物物理学 计算机科学 计算生物学 生物 计算化学 机器学习 生物化学 进化生物学
作者
Matthew C. Chan,Diwakar Shukla
出处
期刊:Journal of Structural Biology [Elsevier]
卷期号:213 (4): 107800-107800 被引量:18
标识
DOI:10.1016/j.jsb.2021.107800
摘要

The flux of ions and molecules in and out of the cell is vital for maintaining the basis of various biological processes. The permeation of substrates across the cellular membrane is mediated through the function of specialized integral membrane proteins commonly known as membrane transporters. These proteins undergo a series of structural rearrangements that allow a primary substrate binding site to be accessed from either side of the membrane at a given time. Structural insights provided by experimentally resolved structures of membrane transporters have aided in the biophysical characterization of these important molecular drug targets. However, characterizing the transitions between conformational states remains challenging to achieve both experimentally and computationally. Though molecular dynamics simulations are a powerful approach to provide atomistic resolution of protein dynamics, a recurring challenge is its ability to efficiently obtain relevant timescales of large conformational transitions as exhibited in transporters. One approach to overcome this difficulty is to adaptively guide the simulation to favor exploration of the conformational landscape, otherwise known as adaptive sampling. Furthermore, such sampling is greatly benefited by the statistical analysis of Markov state models. Historically, the use of Markov state models has been effective in quantifying slow dynamics or long timescale behaviors such as protein folding. Here, we review recent implementations of adaptive sampling and Markov state models to not only address current limitations of molecular dynamics simulations, but to also highlight how Markov state modeling can be applied to investigate the structure-function mechanisms of large, complex membrane transporters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
请叫我风吹麦浪应助124332采纳,获得10
1秒前
草原牧牛郎完成签到,获得积分10
3秒前
星辰大海应助shanshan采纳,获得10
4秒前
firsucia完成签到,获得积分10
4秒前
大个应助xny采纳,获得10
5秒前
5秒前
helinahs发布了新的文献求助10
5秒前
小黑完成签到,获得积分10
6秒前
zhoull完成签到,获得积分10
7秒前
六个核桃完成签到,获得积分10
8秒前
9秒前
潇洒的诗桃应助ling玲采纳,获得10
10秒前
10秒前
豆西豆完成签到,获得积分10
11秒前
Broadway Zhang完成签到,获得积分10
11秒前
Akim应助felix采纳,获得10
12秒前
xiaowu应助玉洁采纳,获得10
12秒前
anthea完成签到 ,获得积分10
12秒前
养猪骑士完成签到,获得积分20
12秒前
斯文败类应助FIGGIEKIO采纳,获得10
13秒前
思源应助坚强夜白采纳,获得10
13秒前
Hello应助勤奋的缘郡采纳,获得10
13秒前
13秒前
真理发布了新的文献求助100
13秒前
咖喱鸡完成签到,获得积分10
14秒前
14秒前
15秒前
ding应助养猪骑士采纳,获得10
16秒前
WZQ发布了新的文献求助10
17秒前
汉堡包应助MROU采纳,获得10
17秒前
西伯利亚大仓鼠关注了科研通微信公众号
17秒前
觉得太贵完成签到 ,获得积分10
18秒前
19秒前
anting发布了新的文献求助10
19秒前
光影发布了新的文献求助10
19秒前
Jiang发布了新的文献求助10
20秒前
21秒前
哭泣慕晴发布了新的文献求助10
24秒前
英姑应助大气的萃采纳,获得10
24秒前
理想三寻完成签到,获得积分10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308509
求助须知:如何正确求助?哪些是违规求助? 2941822
关于积分的说明 8506144
捐赠科研通 2616825
什么是DOI,文献DOI怎么找? 1429824
科研通“疑难数据库(出版商)”最低求助积分说明 663919
邀请新用户注册赠送积分活动 649040