Oil Fraction Measurement of Nonuniform Dispersed Oil–Water Two-Phase Flow Based on Ultrasonic Attenuation

衰减 体积分数 材料科学 声衰减 声学 体积流量 流量(数学) 多相流 机械 光学 复合材料 物理
作者
Yu Han,Chao Tan,Hao Wu,Feng Dong
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-13 被引量:11
标识
DOI:10.1109/tim.2021.3117069
摘要

Oil volume fraction determination is important to the transportation and separation of oil-water dispersed flow in petroleum industry, for which ultrasound method is suitable with the advantages of good penetration and low cost. Existing ultrasonic attenuation methods are based on homogeneous media for the determination of phase fraction without considering the effect of inhomogeneity on attenuation. In this paper, the fractal approach is introduced to modify the acoustic attenuation model by characterizing the inhomogeneity of the dispersed phase in pipe flow, which establishes the relationship between multi-frequency attenuation and droplet size distribution. Then, an improved covariance matrix adaptive evolutionary strategy (CMA-ES) based on the established attenuation model is proposed to estimate oil volume fraction, which combines restart strategy with local search strategy to enhance the search performance and avoid falling into local optimum. Moreover, a demodulation method based on swept-frequency chirp is designed for the time-varying dispersed oil-water pipe flow to quickly obtain the multi-frequency attenuation. The effectiveness of the fractal-based modified attenuation model and the improved CMA-ES is verified by numerical simulations and flowing experiments. The experimental results at different oil volume fractions and flow rates indicate that the fractal-based modified attenuation model can effectively reduce the impact of non-uniform distribution of dispersed phases on the attenuation measurement, and thus effectively improve the measurement accuracy of the oil volume fraction, especially for the dispersed flow in the horizontal pipe.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
vyk发布了新的文献求助10
3秒前
仙林AK47发布了新的文献求助10
4秒前
4秒前
orixero应助zhangjianzeng采纳,获得30
5秒前
爆米花应助难过小懒虫采纳,获得10
5秒前
6秒前
酷波er应助jjj采纳,获得10
6秒前
浩二应助猪猪hero采纳,获得10
7秒前
yar应助猪猪hero采纳,获得10
7秒前
7秒前
jiajie_qin应助猪猪hero采纳,获得20
7秒前
易三木完成签到,获得积分10
7秒前
twinkling109应助猪猪hero采纳,获得10
7秒前
Qixy发布了新的文献求助10
7秒前
希格玻色子应助猪猪hero采纳,获得10
7秒前
把心放在肚里应助猪猪hero采纳,获得10
7秒前
科研通AI2S应助猪猪hero采纳,获得10
7秒前
竹筏过海应助猪猪hero采纳,获得30
7秒前
SYLH应助猪猪hero采纳,获得10
7秒前
天上的云在偷偷看你完成签到,获得积分10
7秒前
Macarsa发布了新的文献求助10
8秒前
niu发布了新的文献求助10
9秒前
10秒前
智勇双全完成签到,获得积分10
11秒前
jiajie_qin给远了个方的求助进行了留言
11秒前
12秒前
LeungYM发布了新的文献求助10
13秒前
jiajie_qin应助qqq采纳,获得20
14秒前
科研达人发布了新的文献求助30
14秒前
子陵完成签到 ,获得积分10
14秒前
15秒前
psj发布了新的文献求助10
15秒前
17秒前
在水一方应助ZWQ采纳,获得10
18秒前
18秒前
2023jqh发布了新的文献求助10
19秒前
4652376完成签到,获得积分10
19秒前
Rinsana完成签到,获得积分10
19秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464150
求助须知:如何正确求助?哪些是违规求助? 3057458
关于积分的说明 9057265
捐赠科研通 2747504
什么是DOI,文献DOI怎么找? 1507379
科研通“疑难数据库(出版商)”最低求助积分说明 696507
邀请新用户注册赠送积分活动 696062