气凝胶
材料科学
聚酰亚胺
复合材料
保温
复合数
热导率
阻燃剂
抗压强度
图层(电子)
作者
Jing Tian,Yi Yang,Tiantian Xue,Guojie Chao,Wei Fan,Tianxi Liu
标识
DOI:10.1016/j.jmst.2021.07.030
摘要
The materials with thermal insulating and fire-retardant properties are highly demanded for architectures to improve the energy efficiency. The applications of conventional inorganic insulating materials such as silica aerogels are restricted by their mechanical fragility and organic insulating materials are either easily ignitable or exhibit unsatisfactory thermal insulation performance. Here, we report an organic/inorganic composite aerogel with integrated double network structure, in which silica constituent homogeneously distribute in the anisotropic polyimide nanofiber aerogel matrix and strong interfacial effect is formed between two components. The integrated binary network endows the polyimide/silica composite aerogels with outstanding compressibility and flexibility even with a high inorganic content of 60%, which can withstand 500 cyclic fatigue tests at a compressive strain of 50% in the radial direction. The resulting composite aerogel exhibits a combination of outstanding insulating performance with a low thermal conductivity (21.2 mW m−1 K−1) and excellent resistance to a 1200 °C flame without disintegration. The high-performance polyimide/silica aerogels can decrease the risk brought by the collapse of reinforced concrete structures in a fire, demonstrating great potential as efficient building materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI