Machine learning based layer roughness modeling in robotic additive manufacturing

机械加工 材料科学 表面光洁度 表面粗糙度 人工神经网络 机械工程 图层(电子) 感知器 编织 沉积(地质) 多层感知器 工程制图 复合材料 计算机科学 人工智能 冶金 工程类 古生物学 生物 沉积物
作者
Ahmed Yaseer,Heping Chen
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:70: 543-552 被引量:33
标识
DOI:10.1016/j.jmapro.2021.08.056
摘要

Wire Arc Additive Manufacturing (WAAM) is a manufacturing technique that deposits metal layer upon layer to manufacture 3D parts based on welding processes. Most researchers considered weld bead width, height, and penetration as the characteristic performance in WAAM. However, layer roughness is also important because it affects the machining cost and mechanical properties of fabricated parts. If the roughness of a deposited layer can be reduced, less machining will be required, and material wastage will be reduced. Reduced layer roughness will also enable better bonding between adjacent layers. Hence, the deposition of weld beads with minimized roughness demands great attention. A few researchers who tried to investigate roughness in WAAM used straight paths for material deposition, but the investigation of the weaving path, which has a great potential to reduce layer roughness, has not been investigated well. The main contribution of this paper is about successfully implementing two machine learning methods to accurately model surface roughness in WAAM using a weaving path: Random Forest and Multilayer Perceptron (MLP) which is also known as Artificial Neural Network (ANN). Both methods are effective for modeling and predicting the layer roughness for a given set of robotic WAAM parameters, but Random Forest gave better results than MLP in terms of accuracy and computational time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
书记发布了新的文献求助10
1秒前
隐形静芙发布了新的文献求助10
1秒前
2秒前
夏悸发布了新的文献求助10
4秒前
123发布了新的文献求助10
5秒前
脑洞疼应助huang采纳,获得10
5秒前
神仙师姐发布了新的文献求助10
6秒前
7秒前
李晴发布了新的文献求助10
9秒前
娃哈哈完成签到,获得积分10
12秒前
云上人发布了新的文献求助20
14秒前
Shayulajiao发布了新的文献求助10
14秒前
15秒前
16秒前
17秒前
无花果应助谨慎冰薇采纳,获得10
17秒前
快乐滑板应助奥特曼采纳,获得10
18秒前
keyan完成签到,获得积分10
18秒前
19秒前
CodeCraft应助Amber采纳,获得10
19秒前
充电宝应助Yanci采纳,获得10
19秒前
Pierce发布了新的文献求助10
20秒前
24秒前
此时此刻发布了新的文献求助10
25秒前
haosu应助阿屁屁猪采纳,获得10
25秒前
25秒前
25秒前
大力翠阳完成签到,获得积分10
25秒前
25秒前
26秒前
27秒前
搜集达人应助卷卷516采纳,获得10
27秒前
27秒前
可爱的函函应助微雨初晴采纳,获得10
29秒前
29秒前
llls发布了新的文献求助10
31秒前
31秒前
jack发布了新的文献求助10
31秒前
隐形曼青应助勤恳的小小采纳,获得10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458698
求助须知:如何正确求助?哪些是违规求助? 3053476
关于积分的说明 9036705
捐赠科研通 2742678
什么是DOI,文献DOI怎么找? 1504506
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694494