Machine learning based layer roughness modeling in robotic additive manufacturing

机械加工 材料科学 表面光洁度 表面粗糙度 人工神经网络 机械工程 图层(电子) 感知器 编织 沉积(地质) 多层感知器 工程制图 复合材料 计算机科学 人工智能 冶金 工程类 古生物学 沉积物 生物
作者
Ahmed Yaseer,Heping Chen
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:70: 543-552 被引量:58
标识
DOI:10.1016/j.jmapro.2021.08.056
摘要

Wire Arc Additive Manufacturing (WAAM) is a manufacturing technique that deposits metal layer upon layer to manufacture 3D parts based on welding processes. Most researchers considered weld bead width, height, and penetration as the characteristic performance in WAAM. However, layer roughness is also important because it affects the machining cost and mechanical properties of fabricated parts. If the roughness of a deposited layer can be reduced, less machining will be required, and material wastage will be reduced. Reduced layer roughness will also enable better bonding between adjacent layers. Hence, the deposition of weld beads with minimized roughness demands great attention. A few researchers who tried to investigate roughness in WAAM used straight paths for material deposition, but the investigation of the weaving path, which has a great potential to reduce layer roughness, has not been investigated well. The main contribution of this paper is about successfully implementing two machine learning methods to accurately model surface roughness in WAAM using a weaving path: Random Forest and Multilayer Perceptron (MLP) which is also known as Artificial Neural Network (ANN). Both methods are effective for modeling and predicting the layer roughness for a given set of robotic WAAM parameters, but Random Forest gave better results than MLP in terms of accuracy and computational time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸣笛应助zzuzjx采纳,获得30
刚刚
刚刚
典雅山槐完成签到,获得积分10
1秒前
oh应助yuqinghui98采纳,获得10
1秒前
1秒前
CY发布了新的文献求助10
1秒前
3秒前
zake发布了新的文献求助20
3秒前
兰乖乖完成签到,获得积分10
4秒前
一梦发布了新的文献求助10
4秒前
5秒前
SUN发布了新的文献求助10
5秒前
6秒前
Lucas应助zying采纳,获得10
8秒前
毛不二发布了新的文献求助10
9秒前
CipherSage应助一梦采纳,获得10
10秒前
SUN完成签到,获得积分10
12秒前
zhaoyali发布了新的文献求助10
13秒前
13秒前
14秒前
甜美的芷完成签到,获得积分10
14秒前
思源应助天真的万声采纳,获得10
15秒前
16秒前
16秒前
16秒前
所所应助SUN采纳,获得10
16秒前
Owen应助djbj2022采纳,获得10
18秒前
18秒前
小太阳发布了新的文献求助50
18秒前
甜美的芷发布了新的文献求助10
18秒前
单薄店员发布了新的文献求助10
20秒前
21秒前
理理理理发布了新的文献求助10
21秒前
葡萄发布了新的文献求助10
21秒前
哈哈哈发布了新的文献求助10
22秒前
23秒前
Liufgui应助科研通管家采纳,获得20
23秒前
CyrusSo524应助科研通管家采纳,获得10
23秒前
美好的含蕊完成签到,获得积分10
23秒前
孙福禄应助科研通管家采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070