Hierarchical Bayesian LSTM for Head Trajectory Prediction on Omnidirectional Images

视区 计算机科学 人工智能 先验概率 贝叶斯概率 推论 主管(地质) 弹道 机器学习 模式识别(心理学) 天文 地貌学 物理 地质学
作者
Li Yang,Mai Xu,Yichen Guo,Xin Deng,Fangyuan Gao,Zhenyu Guan
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:44 (11): 7563-7580 被引量:15
标识
DOI:10.1109/tpami.2021.3117019
摘要

When viewing omnidirectional images (ODIs), viewers can access different viewports via head movement (HM), which sequentially forms head trajectories in spatial-temporal domain. Thus, head trajectories play a key role in modeling human attention on ODIs. In this paper, we establish a large-scale dataset collecting 21,600 head trajectories on 1,080 ODIs. By mining our dataset, we find two important factors influencing head trajectories, i.e., temporal dependency and subject-specific variance. Accordingly, we propose a novel approach integrating hierarchical Bayesian inference into long short-term memory (LSTM) network for head trajectory prediction on ODIs, which is called HiBayes-LSTM. In HiBayes-LSTM, we develop a mechanism of Future Intention Estimation (FIE), which captures the temporal correlations from previous, current and estimated future information, for predicting viewport transition. Additionally, a training scheme called Hierarchical Bayesian inference (HBI) is developed for modeling inter-subject uncertainty in HiBayes-LSTM. For HBI, we introduce a joint Gaussian distribution in a hierarchy, to approximate the posterior distribution over network weights. By sampling subject-specific weights from the approximated posterior distribution, our HiBayes-LSTM approach can yield diverse viewport transition among different subjects and obtain multiple head trajectories. Extensive experiments validate that our HiBayes-LSTM approach significantly outperforms 9 state-of-the-art approaches for trajectory prediction on ODIs, and then it is successfully applied to predict saliency on ODIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
asd发布了新的文献求助10
1秒前
2秒前
X-xING发布了新的文献求助10
3秒前
静静发布了新的文献求助10
3秒前
3秒前
伯赏凝旋完成签到 ,获得积分10
3秒前
5秒前
5秒前
眯眯眼的绝音完成签到,获得积分10
6秒前
李爱国应助你是千堆雪采纳,获得10
6秒前
852应助兴奋千兰采纳,获得10
6秒前
顺心山兰完成签到,获得积分10
8秒前
8秒前
8秒前
香蕉觅云应助远志采纳,获得10
8秒前
9秒前
11秒前
顺心山兰发布了新的文献求助10
11秒前
倪倪驳回了iNk应助
13秒前
刘鑫宇发布了新的文献求助10
14秒前
fan发布了新的文献求助10
15秒前
要减肥期待完成签到,获得积分10
16秒前
16秒前
DDDDDD发布了新的文献求助10
19秒前
Jasper应助科研通管家采纳,获得10
20秒前
20秒前
汉堡包应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
星辰大海应助syj采纳,获得10
21秒前
21秒前
21秒前
21秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434089
求助须知:如何正确求助?哪些是违规求助? 3031323
关于积分的说明 8941651
捐赠科研通 2719262
什么是DOI,文献DOI怎么找? 1491703
科研通“疑难数据库(出版商)”最低求助积分说明 689427
邀请新用户注册赠送积分活动 685580