State-of-Health Estimation for Lithium-Ion Batteries Using Domain Adversarial Transfer Learning

计算机科学 人工智能 预言 学习迁移 特征(语言学) 健康状况 深度学习 机器学习 电池(电) 模式识别(心理学) 数据挖掘 功率(物理) 语言学 量子力学 物理 哲学
作者
Zhuang Ye,Jianbo Yu
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:37 (3): 3528-3543 被引量:62
标识
DOI:10.1109/tpel.2021.3117788
摘要

Lithium-ion batteries are the main energy source of devices, and the estimation of their state-of-health (SOH) has become a hot point in prognostics and health management. However, many existing methods assume that training and testing data follow the same distribution. The model based on dataset under one working condition may be ineffective for the dataset under another working condition due to the distribution discrepancy. Thus, this article proposes a novel battery health prognostic model based on transfer learning. First, a novel transfer learning-based prognostic model, called deep domain adversarial network, is developed for SOH estimation of Lithium-ion batteries. Second, an unsupervised feature alignment metric is proposed, where maximum mean discrepancy and correlation alignment are considered simultaneously. Moreover, a generative adversarial learning is developed to guide the feature generator to provide the domain-invariant features. Finally, a novel feature generator, called dense bidirectional gated recurrent unit, is proposed to extract discriminate features from sensor signals. The effectiveness of DDAN for SOH estimation is verified on a battery dataset. The experimental results indicate that DDAN can effectively predict SOH of Lithium-ion battery, and significantly improve the performance of feature learning and knowledge transferring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵喵7完成签到 ,获得积分10
4秒前
5秒前
6秒前
刘玉梅完成签到,获得积分10
7秒前
科研通AI2S应助sqz采纳,获得10
7秒前
7秒前
Ava应助AnnChen采纳,获得10
8秒前
nicole发布了新的文献求助10
9秒前
晨熙完成签到,获得积分10
9秒前
Hello应助清爽蹇采纳,获得10
9秒前
lllll完成签到,获得积分10
11秒前
12秒前
快乐马发布了新的文献求助10
13秒前
YORLAN完成签到 ,获得积分10
14秒前
16秒前
wying发布了新的文献求助30
16秒前
光亮远航完成签到 ,获得积分10
17秒前
19秒前
Olivia发布了新的文献求助20
21秒前
AnnChen发布了新的文献求助10
21秒前
21秒前
超级灰狼完成签到 ,获得积分10
21秒前
彭于晏应助朵朵采纳,获得30
24秒前
25秒前
传统的钧完成签到,获得积分10
27秒前
Hello应助wying采纳,获得30
28秒前
佳佳应助好久不见采纳,获得10
28秒前
29秒前
29秒前
苏苏苏发布了新的文献求助10
30秒前
30秒前
天宝完成签到,获得积分10
31秒前
医学的记忆完成签到,获得积分20
32秒前
xr发布了新的文献求助10
33秒前
大方的菠萝完成签到 ,获得积分10
33秒前
乐乐应助科研通管家采纳,获得10
34秒前
34秒前
夕诙应助科研通管家采纳,获得20
34秒前
NexusExplorer应助科研通管家采纳,获得10
34秒前
ED应助科研通管家采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966201
求助须知:如何正确求助?哪些是违规求助? 3511622
关于积分的说明 11158995
捐赠科研通 3246241
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343