清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

State-of-Health Estimation for Lithium-Ion Batteries Using Domain Adversarial Transfer Learning

计算机科学 人工智能 预言 学习迁移 特征(语言学) 健康状况 深度学习 机器学习 电池(电) 模式识别(心理学) 数据挖掘 功率(物理) 语言学 量子力学 物理 哲学
作者
Zhuang Ye,Jianbo Yu
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:37 (3): 3528-3543 被引量:56
标识
DOI:10.1109/tpel.2021.3117788
摘要

Lithium-ion batteries are the main energy source of devices, and the estimation of their state-of-health (SOH) has become a hot point in prognostics and health management. However, many existing methods assume that training and testing data follow the same distribution. The model based on dataset under one working condition may be ineffective for the dataset under another working condition due to the distribution discrepancy. Thus, this article proposes a novel battery health prognostic model based on transfer learning. First, a novel transfer learning-based prognostic model, called deep domain adversarial network, is developed for SOH estimation of Lithium-ion batteries. Second, an unsupervised feature alignment metric is proposed, where maximum mean discrepancy and correlation alignment are considered simultaneously. Moreover, a generative adversarial learning is developed to guide the feature generator to provide the domain-invariant features. Finally, a novel feature generator, called dense bidirectional gated recurrent unit, is proposed to extract discriminate features from sensor signals. The effectiveness of DDAN for SOH estimation is verified on a battery dataset. The experimental results indicate that DDAN can effectively predict SOH of Lithium-ion battery, and significantly improve the performance of feature learning and knowledge transferring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoheshan完成签到,获得积分10
1秒前
xiaoheshan发布了新的文献求助10
4秒前
爱静静应助科研通管家采纳,获得20
58秒前
爱静静应助科研通管家采纳,获得10
58秒前
爱静静应助科研通管家采纳,获得10
58秒前
慕青应助一杯茶采纳,获得10
1分钟前
清秀的怀蕊完成签到 ,获得积分10
1分钟前
1分钟前
紫熊完成签到,获得积分10
2分钟前
月儿完成签到 ,获得积分10
2分钟前
缪尔岚完成签到,获得积分10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
wxx完成签到 ,获得积分10
3分钟前
小马111完成签到,获得积分10
4分钟前
小马111发布了新的文献求助10
4分钟前
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
5分钟前
winne发布了新的文献求助10
5分钟前
实力不允许完成签到 ,获得积分10
5分钟前
xanderxue完成签到,获得积分10
5分钟前
边曦完成签到 ,获得积分10
5分钟前
悦耳十三发布了新的文献求助50
6分钟前
6分钟前
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
一杯茶发布了新的文献求助10
7分钟前
一杯茶发布了新的文献求助10
7分钟前
先锋完成签到 ,获得积分10
8分钟前
奶糖喵完成签到 ,获得积分10
8分钟前
爱静静应助科研通管家采纳,获得10
8分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167202
求助须知:如何正确求助?哪些是违规求助? 2818687
关于积分的说明 7921888
捐赠科研通 2478444
什么是DOI,文献DOI怎么找? 1320323
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438