Evaluation, optimization, and application of three independent suspect screening workflows for the characterization of PFASs in water

嫌疑犯 工作流程 计算机科学 筛选试验 数据库 医学 心理学 家庭医学 犯罪学
作者
Paige Jacob,Ri Wang,Casey Ching,Damian E. Helbling
出处
期刊:Environmental Science: Processes & Impacts [The Royal Society of Chemistry]
卷期号:23 (10): 1554-1565 被引量:22
标识
DOI:10.1039/d1em00286d
摘要

Suspect screening is a valuable tool for characterizing per- and polyfluoroalkyl substances (PFASs) in environmental media. Although a variety of data mining tools have been developed and applied for suspect screening of PFAS, few suspect screening workflows have undergone a comprehensive performance evaluation or optimization. The goals of this research were to: (1) evaluate and optimize three independent suspect screening workflows for the detection of PFASs in water samples; and (2) apply the optimized suspect screening workflows to an environmental sample to determine the extent to which suspect screening results converge. We evaluated and optimized suspect screening workflows using Compound Discoverer v3.2, enviMass v4.2, and FluoroMatch v2.4 using test samples containing 33 target PFASs. The average sensitivity (Sen) and selectivity (Sel) for each workflow across the test samples was: Compound Discoverer Sen = 71%, Sel = 85%; enviMass Sen = 89%, Sel = 80%; FluoroMatch Sen = 51%, Sel = 82%. We then applied the optimized workflows to a contaminated groundwater sample containing an unknown number of PFASs. Each workflow managed to annotate unique PFASs that were not annotated by the other workflows including 2 by Compound Discoverer and 19 each by enviMass and FluoroMatch. Thirty-two enviMass hits and 28 of the Compound Discoverer and FluoroMatch hits were annotated by at least one of the other workflows. Sixteen PFASs were annotated by all three of the optimized workflows. This work provides a basis for conducting suspect screening for PFASs that will lead to more consistent reporting of suspect screening data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助甜的瓜采纳,获得10
1秒前
小二郎应助皮崇知采纳,获得10
1秒前
1秒前
1秒前
淡然向松发布了新的文献求助10
2秒前
时尚鸣凤完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
archon709完成签到,获得积分10
4秒前
卓梨完成签到 ,获得积分10
4秒前
liu发布了新的文献求助10
5秒前
hh发布了新的文献求助10
5秒前
Fang发布了新的文献求助10
5秒前
5秒前
6秒前
大个应助何雨洋采纳,获得10
6秒前
依依发布了新的文献求助10
6秒前
佳宁王吧发布了新的文献求助10
6秒前
ADDDGDD完成签到,获得积分20
7秒前
7秒前
stqs完成签到,获得积分20
7秒前
晨曦完成签到,获得积分10
7秒前
ouou发布了新的文献求助10
7秒前
H_C发布了新的文献求助10
8秒前
归尘发布了新的文献求助10
8秒前
思源应助aa采纳,获得10
8秒前
xaiolai发布了新的文献求助10
8秒前
cjx发布了新的文献求助10
8秒前
9秒前
CodeCraft应助ywhys采纳,获得10
9秒前
9秒前
丘比特应助独特夜绿采纳,获得10
9秒前
石沐沐发布了新的文献求助10
9秒前
JamesPei应助芒果柠檬采纳,获得10
9秒前
PENG应助lk采纳,获得10
11秒前
chen发布了新的文献求助10
12秒前
12秒前
麻薯发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515510
求助须知:如何正确求助?哪些是违规求助? 3097850
关于积分的说明 9236939
捐赠科研通 2792825
什么是DOI,文献DOI怎么找? 1532705
邀请新用户注册赠送积分活动 712209
科研通“疑难数据库(出版商)”最低求助积分说明 707201