Evaluation, optimization, and application of three independent suspect screening workflows for the characterization of PFASs in water

嫌疑犯 工作流程 计算机科学 筛选试验 数据库 医学 心理学 家庭医学 犯罪学
作者
Paige Jacob,Ri Wang,Casey Ching,Damian E. Helbling
出处
期刊:Environmental Science: Processes & Impacts [The Royal Society of Chemistry]
卷期号:23 (10): 1554-1565 被引量:25
标识
DOI:10.1039/d1em00286d
摘要

Suspect screening is a valuable tool for characterizing per- and polyfluoroalkyl substances (PFASs) in environmental media. Although a variety of data mining tools have been developed and applied for suspect screening of PFAS, few suspect screening workflows have undergone a comprehensive performance evaluation or optimization. The goals of this research were to: (1) evaluate and optimize three independent suspect screening workflows for the detection of PFASs in water samples; and (2) apply the optimized suspect screening workflows to an environmental sample to determine the extent to which suspect screening results converge. We evaluated and optimized suspect screening workflows using Compound Discoverer v3.2, enviMass v4.2, and FluoroMatch v2.4 using test samples containing 33 target PFASs. The average sensitivity (Sen) and selectivity (Sel) for each workflow across the test samples was: Compound Discoverer Sen = 71%, Sel = 85%; enviMass Sen = 89%, Sel = 80%; FluoroMatch Sen = 51%, Sel = 82%. We then applied the optimized workflows to a contaminated groundwater sample containing an unknown number of PFASs. Each workflow managed to annotate unique PFASs that were not annotated by the other workflows including 2 by Compound Discoverer and 19 each by enviMass and FluoroMatch. Thirty-two enviMass hits and 28 of the Compound Discoverer and FluoroMatch hits were annotated by at least one of the other workflows. Sixteen PFASs were annotated by all three of the optimized workflows. This work provides a basis for conducting suspect screening for PFASs that will lead to more consistent reporting of suspect screening data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助随影采纳,获得10
刚刚
jiunuan应助天才包采纳,获得30
1秒前
1秒前
深情安青应助无聊的新波采纳,获得10
1秒前
希遇安发布了新的文献求助10
1秒前
77qoq完成签到 ,获得积分20
2秒前
KUN发布了新的文献求助10
2秒前
wanx-完成签到,获得积分20
2秒前
桐桐应助Mtoc采纳,获得10
3秒前
无花果应助和谐的饼干采纳,获得50
3秒前
英俊的铭应助deletelzr采纳,获得10
3秒前
3秒前
完美世界应助racill采纳,获得10
3秒前
4秒前
abu完成签到,获得积分10
4秒前
4秒前
无限符号完成签到,获得积分10
4秒前
科研通AI6应助zhenqiqin采纳,获得10
5秒前
好奇宝宝发布了新的文献求助10
5秒前
wanx-发布了新的文献求助80
6秒前
汉堡包应助渊_采纳,获得10
7秒前
7秒前
jianlong0206完成签到 ,获得积分10
7秒前
默默犀牛完成签到 ,获得积分10
7秒前
清爽安青发布了新的文献求助10
7秒前
7秒前
8秒前
南风不竞发布了新的文献求助10
8秒前
JamesPei应助可可豆战士采纳,获得10
9秒前
浮游应助芝士采纳,获得10
9秒前
jiunuan应助芝士采纳,获得10
9秒前
顾矜应助芝士采纳,获得10
9秒前
香蕉觅云应助wzg666采纳,获得10
9秒前
11秒前
脑洞疼应助77qoq采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
wwwwc发布了新的文献求助10
11秒前
xuqiansd发布了新的文献求助10
12秒前
科研通AI6应助棉花糖采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937