Evaluation, optimization, and application of three independent suspect screening workflows for the characterization of PFASs in water

嫌疑犯 工作流程 计算机科学 筛选试验 数据库 医学 心理学 家庭医学 犯罪学
作者
Paige Jacob,Ri Wang,Casey Ching,Damian E. Helbling
出处
期刊:Environmental Science: Processes & Impacts [The Royal Society of Chemistry]
卷期号:23 (10): 1554-1565 被引量:25
标识
DOI:10.1039/d1em00286d
摘要

Suspect screening is a valuable tool for characterizing per- and polyfluoroalkyl substances (PFASs) in environmental media. Although a variety of data mining tools have been developed and applied for suspect screening of PFAS, few suspect screening workflows have undergone a comprehensive performance evaluation or optimization. The goals of this research were to: (1) evaluate and optimize three independent suspect screening workflows for the detection of PFASs in water samples; and (2) apply the optimized suspect screening workflows to an environmental sample to determine the extent to which suspect screening results converge. We evaluated and optimized suspect screening workflows using Compound Discoverer v3.2, enviMass v4.2, and FluoroMatch v2.4 using test samples containing 33 target PFASs. The average sensitivity (Sen) and selectivity (Sel) for each workflow across the test samples was: Compound Discoverer Sen = 71%, Sel = 85%; enviMass Sen = 89%, Sel = 80%; FluoroMatch Sen = 51%, Sel = 82%. We then applied the optimized workflows to a contaminated groundwater sample containing an unknown number of PFASs. Each workflow managed to annotate unique PFASs that were not annotated by the other workflows including 2 by Compound Discoverer and 19 each by enviMass and FluoroMatch. Thirty-two enviMass hits and 28 of the Compound Discoverer and FluoroMatch hits were annotated by at least one of the other workflows. Sixteen PFASs were annotated by all three of the optimized workflows. This work provides a basis for conducting suspect screening for PFASs that will lead to more consistent reporting of suspect screening data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GXL完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
dou完成签到 ,获得积分10
1秒前
mogumogu完成签到,获得积分10
1秒前
2秒前
拾壹发布了新的文献求助10
2秒前
ccct发布了新的文献求助10
2秒前
xqq发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
茄茄发布了新的文献求助10
4秒前
5秒前
farewell完成签到,获得积分10
5秒前
茶叶盒发布了新的文献求助10
6秒前
没烦恼发布了新的文献求助10
6秒前
6秒前
6秒前
invader发布了新的文献求助10
6秒前
6秒前
小yy发布了新的文献求助10
7秒前
lj发布了新的文献求助10
7秒前
7秒前
7秒前
Akim应助活力菠萝采纳,获得10
7秒前
淡淡的归尘应助马晓玲采纳,获得10
7秒前
tender发布了新的文献求助10
8秒前
香蕉觅云应助舒心的芝麻采纳,获得10
8秒前
科研通AI6应助大七采纳,获得10
8秒前
曹冬子程发布了新的文献求助10
8秒前
英勇傲蕾完成签到,获得积分10
8秒前
9秒前
科研通AI2S应助LYF采纳,获得10
9秒前
隐形曼青应助荆佳怡采纳,获得10
9秒前
abc发布了新的文献求助10
9秒前
NexusExplorer应助Areeha采纳,获得10
9秒前
wanci应助Yolanda采纳,获得10
10秒前
Lucas应助搬砖工人采纳,获得10
10秒前
露露完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435258
求助须知:如何正确求助?哪些是违规求助? 4547383
关于积分的说明 14207992
捐赠科研通 4467551
什么是DOI,文献DOI怎么找? 2448594
邀请新用户注册赠送积分活动 1439513
关于科研通互助平台的介绍 1416193