Evaluation, optimization, and application of three independent suspect screening workflows for the characterization of PFASs in water

嫌疑犯 工作流程 计算机科学 筛选试验 数据库 医学 心理学 家庭医学 犯罪学
作者
Paige Jacob,Ri Wang,Casey Ching,Damian E. Helbling
出处
期刊:Environmental Science: Processes & Impacts [Royal Society of Chemistry]
卷期号:23 (10): 1554-1565 被引量:25
标识
DOI:10.1039/d1em00286d
摘要

Suspect screening is a valuable tool for characterizing per- and polyfluoroalkyl substances (PFASs) in environmental media. Although a variety of data mining tools have been developed and applied for suspect screening of PFAS, few suspect screening workflows have undergone a comprehensive performance evaluation or optimization. The goals of this research were to: (1) evaluate and optimize three independent suspect screening workflows for the detection of PFASs in water samples; and (2) apply the optimized suspect screening workflows to an environmental sample to determine the extent to which suspect screening results converge. We evaluated and optimized suspect screening workflows using Compound Discoverer v3.2, enviMass v4.2, and FluoroMatch v2.4 using test samples containing 33 target PFASs. The average sensitivity (Sen) and selectivity (Sel) for each workflow across the test samples was: Compound Discoverer Sen = 71%, Sel = 85%; enviMass Sen = 89%, Sel = 80%; FluoroMatch Sen = 51%, Sel = 82%. We then applied the optimized workflows to a contaminated groundwater sample containing an unknown number of PFASs. Each workflow managed to annotate unique PFASs that were not annotated by the other workflows including 2 by Compound Discoverer and 19 each by enviMass and FluoroMatch. Thirty-two enviMass hits and 28 of the Compound Discoverer and FluoroMatch hits were annotated by at least one of the other workflows. Sixteen PFASs were annotated by all three of the optimized workflows. This work provides a basis for conducting suspect screening for PFASs that will lead to more consistent reporting of suspect screening data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FKVB_完成签到 ,获得积分10
刚刚
刚刚
1秒前
充电宝应助美美桑内采纳,获得10
1秒前
2秒前
酷波er应助祁尒采纳,获得10
4秒前
4秒前
1号完成签到 ,获得积分10
4秒前
酷波er应助Poker采纳,获得10
5秒前
src发布了新的文献求助10
8秒前
David完成签到 ,获得积分10
8秒前
minjeong发布了新的文献求助10
9秒前
10秒前
美美桑内完成签到,获得积分20
10秒前
10秒前
今后应助Jeffery426采纳,获得10
10秒前
放空完成签到,获得积分10
10秒前
lililili发布了新的文献求助10
11秒前
赘婿应助开朗的睫毛膏采纳,获得10
11秒前
麻辣小龙虾完成签到,获得积分10
12秒前
13秒前
轻狂书生发布了新的文献求助10
14秒前
14秒前
科研废物发布了新的文献求助10
14秒前
微笑以南完成签到,获得积分10
15秒前
wyq完成签到,获得积分10
16秒前
白开水完成签到,获得积分10
17秒前
17秒前
lakeisha发布了新的文献求助10
18秒前
wan完成签到 ,获得积分10
21秒前
karyoter完成签到,获得积分10
23秒前
23秒前
情怀应助科研通管家采纳,获得10
24秒前
小马甲应助科研通管家采纳,获得10
24秒前
zho应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
24秒前
zho应助科研通管家采纳,获得10
24秒前
上官若男应助科研通管家采纳,获得10
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5203698
求助须知:如何正确求助?哪些是违规求助? 4383107
关于积分的说明 13648087
捐赠科研通 4240691
什么是DOI,文献DOI怎么找? 2326584
邀请新用户注册赠送积分活动 1324220
关于科研通互助平台的介绍 1276296