Evaluation, optimization, and application of three independent suspect screening workflows for the characterization of PFASs in water

嫌疑犯 工作流程 计算机科学 筛选试验 数据库 医学 心理学 家庭医学 犯罪学
作者
Paige Jacob,Ri Wang,Casey Ching,Damian E. Helbling
出处
期刊:Environmental Science: Processes & Impacts [The Royal Society of Chemistry]
卷期号:23 (10): 1554-1565 被引量:25
标识
DOI:10.1039/d1em00286d
摘要

Suspect screening is a valuable tool for characterizing per- and polyfluoroalkyl substances (PFASs) in environmental media. Although a variety of data mining tools have been developed and applied for suspect screening of PFAS, few suspect screening workflows have undergone a comprehensive performance evaluation or optimization. The goals of this research were to: (1) evaluate and optimize three independent suspect screening workflows for the detection of PFASs in water samples; and (2) apply the optimized suspect screening workflows to an environmental sample to determine the extent to which suspect screening results converge. We evaluated and optimized suspect screening workflows using Compound Discoverer v3.2, enviMass v4.2, and FluoroMatch v2.4 using test samples containing 33 target PFASs. The average sensitivity (Sen) and selectivity (Sel) for each workflow across the test samples was: Compound Discoverer Sen = 71%, Sel = 85%; enviMass Sen = 89%, Sel = 80%; FluoroMatch Sen = 51%, Sel = 82%. We then applied the optimized workflows to a contaminated groundwater sample containing an unknown number of PFASs. Each workflow managed to annotate unique PFASs that were not annotated by the other workflows including 2 by Compound Discoverer and 19 each by enviMass and FluoroMatch. Thirty-two enviMass hits and 28 of the Compound Discoverer and FluoroMatch hits were annotated by at least one of the other workflows. Sixteen PFASs were annotated by all three of the optimized workflows. This work provides a basis for conducting suspect screening for PFASs that will lead to more consistent reporting of suspect screening data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助执着凝冬采纳,获得10
刚刚
李健应助超级的鞅采纳,获得10
1秒前
1秒前
2秒前
洁净芸遥发布了新的文献求助10
2秒前
3秒前
传奇3应助王贺采纳,获得10
3秒前
上官若男应助才不是笨蛋采纳,获得30
3秒前
栗子发布了新的文献求助10
3秒前
Amber完成签到,获得积分10
3秒前
小李呀发布了新的文献求助10
3秒前
lyb发布了新的文献求助10
4秒前
4秒前
与一发布了新的文献求助10
4秒前
mmm在线求大佬相助完成签到,获得积分20
4秒前
盏盏发布了新的文献求助10
5秒前
5秒前
直率沂发布了新的文献求助10
6秒前
6秒前
Yyyyuy完成签到 ,获得积分20
6秒前
可爱的函函应助TANG采纳,获得10
6秒前
8秒前
8秒前
8秒前
共享精神应助洁净芸遥采纳,获得10
9秒前
卡恩完成签到 ,获得积分0
11秒前
陈花蕾发布了新的文献求助10
11秒前
weixiao发布了新的文献求助10
11秒前
能闭嘴吗完成签到 ,获得积分10
12秒前
pl656发布了新的文献求助10
13秒前
13秒前
一休发布了新的文献求助15
13秒前
裴仰纳发布了新的文献求助30
14秒前
14秒前
weiyi完成签到,获得积分20
14秒前
yibo发布了新的文献求助10
15秒前
Irene发布了新的文献求助10
15秒前
15秒前
科研通AI6应助榴莲麦旋风采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469155
求助须知:如何正确求助?哪些是违规求助? 4572311
关于积分的说明 14335054
捐赠科研通 4499131
什么是DOI,文献DOI怎么找? 2464938
邀请新用户注册赠送积分活动 1453493
关于科研通互助平台的介绍 1428006