Magnetic Resonance Radiomics and Machine-learning Models: An Approach for Evaluating Tumor-stroma Ratio in Patients with Pancreatic Ductal Adenocarcinoma

胰腺导管腺癌 医学 接收机工作特性 磁共振成像 无线电技术 逻辑回归 判别式 人工智能 放射科 机器学习 胰腺癌 内科学 计算机科学 癌症
作者
Yinghao Meng,Hao Zhang,Qi Li,Fang Liu,Xu Fang,Jing Li,Jieyu Yu,Xiaochen Feng,Jianping Lu,Yun Bian,Chengwei Shao
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (4): 523-535 被引量:7
标识
DOI:10.1016/j.acra.2021.08.013
摘要

To develop and validate a magnetic resonance imaging (MRI)-based machine learning classifier for evaluating the tumor-stroma ratio (TSR) in patients with pancreatic ductal adenocarcinoma (PDAC).In this retrospective study, 148 patients with PDAC underwent an MR scan and surgical resection. We used hematoxylin and eosin to quantify the TSR. For each patient, we extracted 1,409 radiomics features and reduced them using the least absolute shrinkage and selection operator logistic regression algorithm. The extreme gradient boosting (XGBoost) classifier was developed using a training set comprising 110 consecutive patients, admitted between December 2016 and December 2017. The model was validated in 38 consecutive patients, admitted between January 2018 and April 2018. We determined the performance of the XGBoost classifier based on its discriminative ability, calibration, and clinical utility.A log-rank test revealed significantly longer survival in the TSR-low group. The prediction model displayed good discrimination in the training (area under the curve [AUC], 0.82) and validation set (AUC, 0.78). While the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the training set were 77.14%, 75.00%, 0.76%, 0.84%, and 0.65%, respectively, those for the validation set were 58.33%, 92.86%, 0.71%, 0.93%, and 0.57%, respectively.We developed an XGBoost classifier based on MRI radiomics features, a non-invasive prediction tool that can evaluate the TSR of patients with PDAC. Moreover, it will provide a basis for interstitial targeted therapy selection and monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
背后孤晴完成签到,获得积分10
1秒前
开心小小完成签到,获得积分10
1秒前
pinge发布了新的文献求助10
1秒前
2秒前
完美世界应助rrrrr采纳,获得10
3秒前
宇宇宇c完成签到,获得积分10
4秒前
十三州府完成签到,获得积分10
4秒前
stories完成签到,获得积分20
4秒前
5秒前
qi发布了新的文献求助10
5秒前
开心小小发布了新的文献求助10
6秒前
狂野的海雪完成签到,获得积分10
7秒前
8秒前
可口可乐了完成签到,获得积分10
8秒前
sye发布了新的文献求助20
10秒前
传奇3应助leo采纳,获得10
10秒前
guangyu完成签到,获得积分10
10秒前
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
xjcy应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
xjcy应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI2S应助狗剩采纳,获得10
12秒前
王爷教你白给完成签到 ,获得积分10
12秒前
13秒前
13秒前
于小野发布了新的文献求助10
14秒前
受伤的靖琪完成签到,获得积分10
14秒前
morena发布了新的文献求助10
15秒前
ShowMaker举报爱喝水求助涉嫌违规
16秒前
CipherSage应助孙小雨采纳,获得10
16秒前
稞小弟发布了新的文献求助10
17秒前
科研通AI2S应助zp采纳,获得10
17秒前
内向的水儿完成签到,获得积分10
18秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146297
求助须知:如何正确求助?哪些是违规求助? 2797687
关于积分的说明 7825144
捐赠科研通 2454059
什么是DOI,文献DOI怎么找? 1305990
科研通“疑难数据库(出版商)”最低求助积分说明 627630
版权声明 601503