Magnetic Resonance Radiomics and Machine-learning Models: An Approach for Evaluating Tumor-stroma Ratio in Patients with Pancreatic Ductal Adenocarcinoma

胰腺导管腺癌 医学 接收机工作特性 磁共振成像 无线电技术 逻辑回归 判别式 人工智能 放射科 机器学习 胰腺癌 内科学 计算机科学 癌症
作者
Yinghao Meng,Hao Zhang,Qi Li,Fang Liu,Xu Fang,Jing Li,Jieyu Yu,Xiaochen Feng,Jianping Lu,Yun Bian,Chengwei Shao
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29 (4): 523-535 被引量:11
标识
DOI:10.1016/j.acra.2021.08.013
摘要

To develop and validate a magnetic resonance imaging (MRI)-based machine learning classifier for evaluating the tumor-stroma ratio (TSR) in patients with pancreatic ductal adenocarcinoma (PDAC).In this retrospective study, 148 patients with PDAC underwent an MR scan and surgical resection. We used hematoxylin and eosin to quantify the TSR. For each patient, we extracted 1,409 radiomics features and reduced them using the least absolute shrinkage and selection operator logistic regression algorithm. The extreme gradient boosting (XGBoost) classifier was developed using a training set comprising 110 consecutive patients, admitted between December 2016 and December 2017. The model was validated in 38 consecutive patients, admitted between January 2018 and April 2018. We determined the performance of the XGBoost classifier based on its discriminative ability, calibration, and clinical utility.A log-rank test revealed significantly longer survival in the TSR-low group. The prediction model displayed good discrimination in the training (area under the curve [AUC], 0.82) and validation set (AUC, 0.78). While the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the training set were 77.14%, 75.00%, 0.76%, 0.84%, and 0.65%, respectively, those for the validation set were 58.33%, 92.86%, 0.71%, 0.93%, and 0.57%, respectively.We developed an XGBoost classifier based on MRI radiomics features, a non-invasive prediction tool that can evaluate the TSR of patients with PDAC. Moreover, it will provide a basis for interstitial targeted therapy selection and monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浪者漫心发布了新的文献求助10
1秒前
充电宝应助jia采纳,获得10
1秒前
研酒生完成签到,获得积分10
1秒前
1秒前
1秒前
liuhll完成签到,获得积分20
1秒前
2秒前
2秒前
小魏完成签到,获得积分10
2秒前
传奇3应助橘子味汽水采纳,获得10
2秒前
小小雪完成签到 ,获得积分10
2秒前
2秒前
无花果应助美丽的德地采纳,获得30
2秒前
DepengZhang发布了新的文献求助10
3秒前
ww完成签到 ,获得积分10
4秒前
大个应助秋浱采纳,获得10
4秒前
墨丿筠发布了新的文献求助10
4秒前
4秒前
孤独的访旋给孤独的访旋的求助进行了留言
5秒前
手帕很忙完成签到,获得积分10
5秒前
Tian发布了新的文献求助30
5秒前
6秒前
Huying发布了新的文献求助10
6秒前
6秒前
科研通AI5应助shi hui采纳,获得10
7秒前
8秒前
DI发布了新的文献求助30
8秒前
菌菌完成签到,获得积分10
8秒前
李健应助唐唐采纳,获得30
8秒前
9秒前
10秒前
10秒前
Charlie发布了新的文献求助50
10秒前
墨丿筠完成签到,获得积分10
10秒前
爱撒娇的长颈鹿完成签到,获得积分10
10秒前
丘比特应助从容飞阳采纳,获得10
10秒前
刘欣发布了新的文献求助10
11秒前
瓜i完成签到,获得积分10
11秒前
12秒前
慌小丧发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193007
求助须知:如何正确求助?哪些是违规求助? 4375799
关于积分的说明 13626640
捐赠科研通 4230400
什么是DOI,文献DOI怎么找? 2320393
邀请新用户注册赠送积分活动 1318798
关于科研通互助平台的介绍 1269105