Magnetic Resonance Radiomics and Machine-learning Models: An Approach for Evaluating Tumor-stroma Ratio in Patients with Pancreatic Ductal Adenocarcinoma

胰腺导管腺癌 医学 接收机工作特性 磁共振成像 无线电技术 逻辑回归 判别式 人工智能 放射科 机器学习 胰腺癌 内科学 计算机科学 癌症
作者
Yinghao Meng,Hao Zhang,Qi Li,Fang Liu,Xu Fang,Jing Li,Jieyu Yu,Xiaochen Feng,Jianping Lu,Yun Bian,Chengwei Shao
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (4): 523-535 被引量:19
标识
DOI:10.1016/j.acra.2021.08.013
摘要

To develop and validate a magnetic resonance imaging (MRI)-based machine learning classifier for evaluating the tumor-stroma ratio (TSR) in patients with pancreatic ductal adenocarcinoma (PDAC).In this retrospective study, 148 patients with PDAC underwent an MR scan and surgical resection. We used hematoxylin and eosin to quantify the TSR. For each patient, we extracted 1,409 radiomics features and reduced them using the least absolute shrinkage and selection operator logistic regression algorithm. The extreme gradient boosting (XGBoost) classifier was developed using a training set comprising 110 consecutive patients, admitted between December 2016 and December 2017. The model was validated in 38 consecutive patients, admitted between January 2018 and April 2018. We determined the performance of the XGBoost classifier based on its discriminative ability, calibration, and clinical utility.A log-rank test revealed significantly longer survival in the TSR-low group. The prediction model displayed good discrimination in the training (area under the curve [AUC], 0.82) and validation set (AUC, 0.78). While the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the training set were 77.14%, 75.00%, 0.76%, 0.84%, and 0.65%, respectively, those for the validation set were 58.33%, 92.86%, 0.71%, 0.93%, and 0.57%, respectively.We developed an XGBoost classifier based on MRI radiomics features, a non-invasive prediction tool that can evaluate the TSR of patients with PDAC. Moreover, it will provide a basis for interstitial targeted therapy selection and monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂泊者发布了新的文献求助10
刚刚
兴奋惜天完成签到,获得积分10
刚刚
JamesPei应助小吴采纳,获得10
刚刚
事已至此已成人喵完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
坚果发布了新的文献求助10
2秒前
bkagyin应助硝基甲苯采纳,获得10
2秒前
搜集达人应助高高采纳,获得10
2秒前
阿飞飞完成签到 ,获得积分10
2秒前
Liu发布了新的文献求助10
3秒前
王红鑫完成签到,获得积分10
3秒前
3秒前
孙皮皮完成签到,获得积分10
4秒前
Owen应助YZY采纳,获得10
4秒前
今后应助天涯采纳,获得10
4秒前
mdjinij发布了新的文献求助10
4秒前
隐形曼青应助vhziyy采纳,获得10
4秒前
个性的谷梦完成签到,获得积分10
4秒前
4秒前
TT发布了新的文献求助10
5秒前
5秒前
淡定的半梦完成签到,获得积分10
6秒前
迅速雨琴发布了新的文献求助10
6秒前
00279完成签到,获得积分10
6秒前
tzy完成签到,获得积分10
6秒前
longer发布了新的文献求助10
7秒前
7秒前
赘婿应助YY采纳,获得10
7秒前
和尚哥完成签到,获得积分10
8秒前
Blank完成签到 ,获得积分10
8秒前
科研通AI6应助Liu采纳,获得10
8秒前
银河康康完成签到,获得积分10
8秒前
bkagyin应助XUXU采纳,获得10
9秒前
田様应助小黄鸭采纳,获得10
9秒前
9秒前
10秒前
guo发布了新的文献求助10
11秒前
清风徐来完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505457
求助须知:如何正确求助?哪些是违规求助? 4601071
关于积分的说明 14475473
捐赠科研通 4535189
什么是DOI,文献DOI怎么找? 2485194
邀请新用户注册赠送积分活动 1468222
关于科研通互助平台的介绍 1440685