Magnetic Resonance Radiomics and Machine-learning Models: An Approach for Evaluating Tumor-stroma Ratio in Patients with Pancreatic Ductal Adenocarcinoma

胰腺导管腺癌 医学 接收机工作特性 磁共振成像 无线电技术 逻辑回归 判别式 人工智能 放射科 机器学习 胰腺癌 内科学 计算机科学 癌症
作者
Yinghao Meng,Hao Zhang,Qi Li,Fang Liu,Xu Fang,Jing Li,Jieyu Yu,Xiaochen Feng,Jianping Lu,Yun Bian,Chengwei Shao
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (4): 523-535 被引量:10
标识
DOI:10.1016/j.acra.2021.08.013
摘要

To develop and validate a magnetic resonance imaging (MRI)-based machine learning classifier for evaluating the tumor-stroma ratio (TSR) in patients with pancreatic ductal adenocarcinoma (PDAC).In this retrospective study, 148 patients with PDAC underwent an MR scan and surgical resection. We used hematoxylin and eosin to quantify the TSR. For each patient, we extracted 1,409 radiomics features and reduced them using the least absolute shrinkage and selection operator logistic regression algorithm. The extreme gradient boosting (XGBoost) classifier was developed using a training set comprising 110 consecutive patients, admitted between December 2016 and December 2017. The model was validated in 38 consecutive patients, admitted between January 2018 and April 2018. We determined the performance of the XGBoost classifier based on its discriminative ability, calibration, and clinical utility.A log-rank test revealed significantly longer survival in the TSR-low group. The prediction model displayed good discrimination in the training (area under the curve [AUC], 0.82) and validation set (AUC, 0.78). While the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the training set were 77.14%, 75.00%, 0.76%, 0.84%, and 0.65%, respectively, those for the validation set were 58.33%, 92.86%, 0.71%, 0.93%, and 0.57%, respectively.We developed an XGBoost classifier based on MRI radiomics features, a non-invasive prediction tool that can evaluate the TSR of patients with PDAC. Moreover, it will provide a basis for interstitial targeted therapy selection and monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助陶醉觅夏采纳,获得200
1秒前
憨鬼憨切发布了新的文献求助10
1秒前
1秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
3秒前
4秒前
5秒前
hh应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
Eva完成签到,获得积分10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
清爽老九应助科研通管家采纳,获得20
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
greenPASS666发布了新的文献求助10
6秒前
涂欣桐应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
secbox完成签到,获得积分10
7秒前
刘哈哈发布了新的文献求助30
7秒前
xyzdmmm完成签到,获得积分10
8秒前
8秒前
欢呼冰岚发布了新的文献求助30
9秒前
xiongdi521发布了新的文献求助10
9秒前
honeybee完成签到,获得积分10
11秒前
兔子完成签到,获得积分10
12秒前
汉关发布了新的文献求助10
12秒前
NexusExplorer应助WZ0904采纳,获得10
13秒前
xiongdi521完成签到,获得积分10
14秒前
14秒前
ding应助奋斗的小林采纳,获得10
14秒前
超帅曼柔完成签到,获得积分10
14秒前
酷波er应助xg采纳,获得10
15秒前
听话的亦瑶完成签到,获得积分10
16秒前
龙江游侠完成签到,获得积分10
16秒前
小蘑菇应助honeybee采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849