Magnetic Resonance Radiomics and Machine-learning Models: An Approach for Evaluating Tumor-stroma Ratio in Patients with Pancreatic Ductal Adenocarcinoma

胰腺导管腺癌 医学 接收机工作特性 磁共振成像 无线电技术 逻辑回归 判别式 人工智能 放射科 机器学习 胰腺癌 内科学 计算机科学 癌症
作者
Yinghao Meng,Hao Zhang,Qi Li,Fang Liu,Xu Fang,Jing Li,Jieyu Yu,Xiaochen Feng,Jianping Lu,Yun Bian,Chengwei Shao
出处
期刊:Academic Radiology [Elsevier]
卷期号:29 (4): 523-535 被引量:11
标识
DOI:10.1016/j.acra.2021.08.013
摘要

To develop and validate a magnetic resonance imaging (MRI)-based machine learning classifier for evaluating the tumor-stroma ratio (TSR) in patients with pancreatic ductal adenocarcinoma (PDAC).In this retrospective study, 148 patients with PDAC underwent an MR scan and surgical resection. We used hematoxylin and eosin to quantify the TSR. For each patient, we extracted 1,409 radiomics features and reduced them using the least absolute shrinkage and selection operator logistic regression algorithm. The extreme gradient boosting (XGBoost) classifier was developed using a training set comprising 110 consecutive patients, admitted between December 2016 and December 2017. The model was validated in 38 consecutive patients, admitted between January 2018 and April 2018. We determined the performance of the XGBoost classifier based on its discriminative ability, calibration, and clinical utility.A log-rank test revealed significantly longer survival in the TSR-low group. The prediction model displayed good discrimination in the training (area under the curve [AUC], 0.82) and validation set (AUC, 0.78). While the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the training set were 77.14%, 75.00%, 0.76%, 0.84%, and 0.65%, respectively, those for the validation set were 58.33%, 92.86%, 0.71%, 0.93%, and 0.57%, respectively.We developed an XGBoost classifier based on MRI radiomics features, a non-invasive prediction tool that can evaluate the TSR of patients with PDAC. Moreover, it will provide a basis for interstitial targeted therapy selection and monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助小瓶子采纳,获得10
2秒前
2秒前
我是老大应助老迟的新瑶采纳,获得10
3秒前
pure_LJc发布了新的文献求助10
3秒前
3秒前
ding应助woody采纳,获得200
4秒前
4秒前
1449445280发布了新的文献求助10
4秒前
5秒前
薛定谔的猫完成签到,获得积分20
5秒前
6秒前
干净依秋发布了新的文献求助10
6秒前
wise111发布了新的文献求助10
6秒前
今后应助bhkwxdxy采纳,获得10
6秒前
6秒前
SciGPT应助亚亚呀采纳,获得30
7秒前
今年花生去年红完成签到,获得积分20
7秒前
8秒前
华仔应助隔壁小孩采纳,获得30
8秒前
领导范儿应助追寻冬萱采纳,获得20
8秒前
Double发布了新的文献求助10
8秒前
8秒前
8秒前
狂野老黑完成签到,获得积分10
8秒前
9秒前
香蕉觅云应助暴躁的咖啡采纳,获得10
9秒前
9秒前
9秒前
10秒前
蓓蓓发布了新的文献求助10
10秒前
赘婿应助给好评采纳,获得10
10秒前
yhx发布了新的文献求助20
10秒前
10秒前
11秒前
zw发布了新的文献求助10
11秒前
情怀应助zzdd采纳,获得10
11秒前
Lig发布了新的文献求助10
11秒前
dyh发布了新的文献求助10
12秒前
成就半双发布了新的文献求助10
12秒前
脑洞疼应助干净依秋采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410082
求助须知:如何正确求助?哪些是违规求助? 4527588
关于积分的说明 14111576
捐赠科研通 4441954
什么是DOI,文献DOI怎么找? 2437768
邀请新用户注册赠送积分活动 1429705
关于科研通互助平台的介绍 1407763