Extracting tobacco planting areas using LSTM from time series Sentinel-1 SAR data

遥感 计算机科学 特征提取 时间序列 人工智能 烟草栽培 机器学习 农业 地理 考古
作者
Jue Zhou,Mengmeng Li,Xiaoqin Wang,Xiaolong Xiu,Dehua Huang
标识
DOI:10.1109/agro-geoinformatics50104.2021.9530349
摘要

Tobacco is an important economic crop in the southern part of China, e.g., Fujian Province. Detailed spatial information of tobacco planting is essential for a good agriculture plan and sustainable management of tobacco. Optical remote sensing images acquired in the Fujian region are heavily affected by cloud coverage due to a subtropical climate. In this study, we investigate the use of time series C-band Sentinel-1 (S1) SAR data to extract tobacco planting areas. We use a Long Short-Term Memory (LSTM) model to quantify the relations between tobacco’s phenological information and the time series of features extracted from S1 SAR data. More specifically, the VH polarization channel was used to create the time series of feature datasets. Experiments were conducted on the S1 SAR dataset acquired during the growth cycle of tobacco from 2019 to 2020 in Nanping, Fujian, China. To evaluate the effectiveness of the proposed method, we compared the extraction results with that of the conventional machine learning method, i.e., Light Gradient Boosting Machine (Light GBM). Results show that the tobacco areas extracted by the proposed LSTM method have an overall accuracy of 82.9%, based on validation samples derived from very high resolution remote sensing images and a field survey conducted in 2020. The obtained extraction accuracy is higher than that of the Light GBM method, i.e., 78.6%. We conclude that the proposed LSTM method has a high potential for mapping tobacco planting in (sub)tropical regions using time series of S1 SAR data, and can be used as an alternative method for mapping the planting of other crop types from remote sensing images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张继豪发布了新的文献求助10
2秒前
妤懿完成签到 ,获得积分10
2秒前
科目三应助优秀的在渊采纳,获得10
2秒前
GQ发布了新的文献求助10
2秒前
英勇羿发布了新的文献求助200
3秒前
mhpvv发布了新的文献求助10
3秒前
3秒前
林qiuxiang完成签到,获得积分20
4秒前
Lenna45完成签到 ,获得积分10
4秒前
结实的白开水完成签到,获得积分10
5秒前
5秒前
wyc1025发布了新的文献求助10
5秒前
细腻的宫二完成签到,获得积分10
6秒前
高兴的向秋完成签到,获得积分20
6秒前
6秒前
6秒前
大模型应助爱吃麻辣烫采纳,获得10
7秒前
雷EX1完成签到,获得积分10
7秒前
8秒前
CipherSage应助张继豪采纳,获得10
8秒前
8秒前
逐梦发布了新的文献求助10
9秒前
乐乐应助西因采纳,获得10
9秒前
Silence完成签到,获得积分10
10秒前
orixero应助ZinyamHui采纳,获得10
10秒前
10秒前
英勇羿完成签到,获得积分10
11秒前
11秒前
12秒前
hjhj发布了新的文献求助10
12秒前
满眼星陈完成签到,获得积分20
13秒前
tangyy1205发布了新的文献求助10
13秒前
养乐多完成签到 ,获得积分10
14秒前
Jared应助坦率雁丝采纳,获得10
16秒前
patrickli发布了新的文献求助10
17秒前
shawn完成签到 ,获得积分10
17秒前
丘比特应助舒心的安萱采纳,获得10
17秒前
WanMoledy完成签到,获得积分10
18秒前
zho应助自信寻真采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589907
求助须知:如何正确求助?哪些是违规求助? 4674376
关于积分的说明 14793616
捐赠科研通 4629217
什么是DOI,文献DOI怎么找? 2532436
邀请新用户注册赠送积分活动 1501101
关于科研通互助平台的介绍 1468527