Extracting tobacco planting areas using LSTM from time series Sentinel-1 SAR data

遥感 计算机科学 特征提取 时间序列 人工智能 烟草栽培 机器学习 农业 地理 考古
作者
Jue Zhou,Mengmeng Li,Xiaoqin Wang,Xiaolong Xiu,Dehua Huang
标识
DOI:10.1109/agro-geoinformatics50104.2021.9530349
摘要

Tobacco is an important economic crop in the southern part of China, e.g., Fujian Province. Detailed spatial information of tobacco planting is essential for a good agriculture plan and sustainable management of tobacco. Optical remote sensing images acquired in the Fujian region are heavily affected by cloud coverage due to a subtropical climate. In this study, we investigate the use of time series C-band Sentinel-1 (S1) SAR data to extract tobacco planting areas. We use a Long Short-Term Memory (LSTM) model to quantify the relations between tobacco’s phenological information and the time series of features extracted from S1 SAR data. More specifically, the VH polarization channel was used to create the time series of feature datasets. Experiments were conducted on the S1 SAR dataset acquired during the growth cycle of tobacco from 2019 to 2020 in Nanping, Fujian, China. To evaluate the effectiveness of the proposed method, we compared the extraction results with that of the conventional machine learning method, i.e., Light Gradient Boosting Machine (Light GBM). Results show that the tobacco areas extracted by the proposed LSTM method have an overall accuracy of 82.9%, based on validation samples derived from very high resolution remote sensing images and a field survey conducted in 2020. The obtained extraction accuracy is higher than that of the Light GBM method, i.e., 78.6%. We conclude that the proposed LSTM method has a high potential for mapping tobacco planting in (sub)tropical regions using time series of S1 SAR data, and can be used as an alternative method for mapping the planting of other crop types from remote sensing images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿巴阿巴阿巴完成签到,获得积分10
3秒前
mushini完成签到,获得积分20
3秒前
万能图书馆应助莫西莫西采纳,获得10
4秒前
bafanbqg完成签到,获得积分10
6秒前
思源应助怕孤独的可乐采纳,获得10
7秒前
科研通AI2S应助Neol采纳,获得30
7秒前
9秒前
10秒前
共享精神应助mumu采纳,获得20
10秒前
喜欢月亮完成签到 ,获得积分10
10秒前
10秒前
珺儿完成签到,获得积分10
10秒前
11秒前
12秒前
13秒前
111完成签到,获得积分10
13秒前
暮霭沉沉应助林林采纳,获得10
13秒前
杜华詹完成签到,获得积分10
15秒前
enen发布了新的文献求助10
16秒前
陆小果发布了新的文献求助10
17秒前
莫西莫西发布了新的文献求助10
17秒前
36456657完成签到,获得积分0
17秒前
领导范儿应助薛定谔的猫采纳,获得10
19秒前
直率的羊青完成签到 ,获得积分10
19秒前
JSDYCH完成签到,获得积分10
20秒前
不爱吃香菜完成签到 ,获得积分10
20秒前
郦稀完成签到,获得积分10
21秒前
科研通AI2S应助淡淡菠萝采纳,获得10
22秒前
星辰大海应助努力毕业、采纳,获得10
24秒前
tunerling完成签到,获得积分10
25秒前
27秒前
hxksxc发布了新的文献求助50
27秒前
Orange应助laiwei采纳,获得30
29秒前
33秒前
敬老院N号应助科研通管家采纳,获得30
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
orixero应助科研通管家采纳,获得10
34秒前
小马甲应助科研通管家采纳,获得10
34秒前
李健应助科研通管家采纳,获得10
34秒前
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155908
求助须知:如何正确求助?哪些是违规求助? 2807136
关于积分的说明 7871997
捐赠科研通 2465497
什么是DOI,文献DOI怎么找? 1312260
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905