Extracting tobacco planting areas using LSTM from time series Sentinel-1 SAR data

遥感 计算机科学 特征提取 时间序列 人工智能 烟草栽培 机器学习 农业 地理 考古
作者
Jue Zhou,Mengmeng Li,Xiaoqin Wang,Xiaolong Xiu,Dehua Huang
标识
DOI:10.1109/agro-geoinformatics50104.2021.9530349
摘要

Tobacco is an important economic crop in the southern part of China, e.g., Fujian Province. Detailed spatial information of tobacco planting is essential for a good agriculture plan and sustainable management of tobacco. Optical remote sensing images acquired in the Fujian region are heavily affected by cloud coverage due to a subtropical climate. In this study, we investigate the use of time series C-band Sentinel-1 (S1) SAR data to extract tobacco planting areas. We use a Long Short-Term Memory (LSTM) model to quantify the relations between tobacco’s phenological information and the time series of features extracted from S1 SAR data. More specifically, the VH polarization channel was used to create the time series of feature datasets. Experiments were conducted on the S1 SAR dataset acquired during the growth cycle of tobacco from 2019 to 2020 in Nanping, Fujian, China. To evaluate the effectiveness of the proposed method, we compared the extraction results with that of the conventional machine learning method, i.e., Light Gradient Boosting Machine (Light GBM). Results show that the tobacco areas extracted by the proposed LSTM method have an overall accuracy of 82.9%, based on validation samples derived from very high resolution remote sensing images and a field survey conducted in 2020. The obtained extraction accuracy is higher than that of the Light GBM method, i.e., 78.6%. We conclude that the proposed LSTM method has a high potential for mapping tobacco planting in (sub)tropical regions using time series of S1 SAR data, and can be used as an alternative method for mapping the planting of other crop types from remote sensing images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助小圆采纳,获得10
2秒前
Orange应助无舟采纳,获得10
2秒前
耍酷诗槐应助多潘立酮采纳,获得10
2秒前
bai完成签到,获得积分10
2秒前
齐天大圣应助wcwc12138采纳,获得30
2秒前
摆烂的实验室打工人完成签到,获得积分10
3秒前
甘乐发布了新的文献求助10
3秒前
4秒前
赘婿应助wmmm采纳,获得10
4秒前
ABC发布了新的文献求助30
4秒前
在水一方应助Avalon采纳,获得10
4秒前
科研助手6应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
5秒前
Jasper应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
丘比特应助roshan采纳,获得10
6秒前
6秒前
ding应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
玩是罪恶的完成签到,获得积分10
8秒前
king_of_zju发布了新的文献求助10
8秒前
羊羔蓉完成签到,获得积分10
8秒前
宋宋发布了新的文献求助10
8秒前
深情安青应助爹爹采纳,获得10
10秒前
默默发布了新的文献求助10
10秒前
scanker1981完成签到,获得积分10
12秒前
Lisa完成签到 ,获得积分10
12秒前
小海完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260505
捐赠科研通 3272347
什么是DOI,文献DOI怎么找? 1805732
邀请新用户注册赠送积分活动 882637
科研通“疑难数据库(出版商)”最低求助积分说明 809425