Extracting tobacco planting areas using LSTM from time series Sentinel-1 SAR data

遥感 计算机科学 特征提取 时间序列 人工智能 烟草栽培 机器学习 农业 地理 考古
作者
Jue Zhou,Mengmeng Li,Xiaoqin Wang,Xiaolong Xiu,Dehua Huang
标识
DOI:10.1109/agro-geoinformatics50104.2021.9530349
摘要

Tobacco is an important economic crop in the southern part of China, e.g., Fujian Province. Detailed spatial information of tobacco planting is essential for a good agriculture plan and sustainable management of tobacco. Optical remote sensing images acquired in the Fujian region are heavily affected by cloud coverage due to a subtropical climate. In this study, we investigate the use of time series C-band Sentinel-1 (S1) SAR data to extract tobacco planting areas. We use a Long Short-Term Memory (LSTM) model to quantify the relations between tobacco’s phenological information and the time series of features extracted from S1 SAR data. More specifically, the VH polarization channel was used to create the time series of feature datasets. Experiments were conducted on the S1 SAR dataset acquired during the growth cycle of tobacco from 2019 to 2020 in Nanping, Fujian, China. To evaluate the effectiveness of the proposed method, we compared the extraction results with that of the conventional machine learning method, i.e., Light Gradient Boosting Machine (Light GBM). Results show that the tobacco areas extracted by the proposed LSTM method have an overall accuracy of 82.9%, based on validation samples derived from very high resolution remote sensing images and a field survey conducted in 2020. The obtained extraction accuracy is higher than that of the Light GBM method, i.e., 78.6%. We conclude that the proposed LSTM method has a high potential for mapping tobacco planting in (sub)tropical regions using time series of S1 SAR data, and can be used as an alternative method for mapping the planting of other crop types from remote sensing images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
character577完成签到,获得积分10
刚刚
脑洞疼应助Nimnse采纳,获得30
1秒前
CHENYINGYING发布了新的文献求助10
1秒前
丘比特应助wangli采纳,获得10
2秒前
精明芷巧完成签到 ,获得积分10
2秒前
didi完成签到,获得积分10
2秒前
短腿小柯基完成签到 ,获得积分10
3秒前
erjfuhe发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
草原狼完成签到,获得积分10
4秒前
zhang005on完成签到,获得积分10
4秒前
lixia完成签到 ,获得积分10
4秒前
小牧鱼完成签到,获得积分10
7秒前
8秒前
勤劳的斑马完成签到,获得积分10
8秒前
8秒前
kqd完成签到,获得积分10
9秒前
10秒前
Nimnse完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
junyang完成签到,获得积分10
12秒前
肖旻发布了新的文献求助10
12秒前
风雨季夏完成签到 ,获得积分10
12秒前
dyp完成签到,获得积分10
12秒前
开心的谷兰完成签到,获得积分10
13秒前
所所应助Sammy采纳,获得10
13秒前
落雪慕卿颜完成签到,获得积分10
13秒前
Nimnse发布了新的文献求助30
14秒前
12333发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
李爱国应助恃6采纳,获得10
15秒前
15秒前
过于喧嚣的孤独完成签到,获得积分10
15秒前
明亮的咖啡豆完成签到,获得积分10
15秒前
11完成签到,获得积分10
16秒前
Akim应助难过云朵采纳,获得10
16秒前
书蠹诗魔完成签到,获得积分10
16秒前
次一口多多完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773617
求助须知:如何正确求助?哪些是违规求助? 5612760
关于积分的说明 15431930
捐赠科研通 4906024
什么是DOI,文献DOI怎么找? 2640036
邀请新用户注册赠送积分活动 1587869
关于科研通互助平台的介绍 1542957