已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Extracting tobacco planting areas using LSTM from time series Sentinel-1 SAR data

遥感 计算机科学 特征提取 时间序列 人工智能 烟草栽培 机器学习 农业 地理 考古
作者
Jue Zhou,Mengmeng Li,Xiaoqin Wang,Xiaolong Xiu,Dehua Huang
标识
DOI:10.1109/agro-geoinformatics50104.2021.9530349
摘要

Tobacco is an important economic crop in the southern part of China, e.g., Fujian Province. Detailed spatial information of tobacco planting is essential for a good agriculture plan and sustainable management of tobacco. Optical remote sensing images acquired in the Fujian region are heavily affected by cloud coverage due to a subtropical climate. In this study, we investigate the use of time series C-band Sentinel-1 (S1) SAR data to extract tobacco planting areas. We use a Long Short-Term Memory (LSTM) model to quantify the relations between tobacco’s phenological information and the time series of features extracted from S1 SAR data. More specifically, the VH polarization channel was used to create the time series of feature datasets. Experiments were conducted on the S1 SAR dataset acquired during the growth cycle of tobacco from 2019 to 2020 in Nanping, Fujian, China. To evaluate the effectiveness of the proposed method, we compared the extraction results with that of the conventional machine learning method, i.e., Light Gradient Boosting Machine (Light GBM). Results show that the tobacco areas extracted by the proposed LSTM method have an overall accuracy of 82.9%, based on validation samples derived from very high resolution remote sensing images and a field survey conducted in 2020. The obtained extraction accuracy is higher than that of the Light GBM method, i.e., 78.6%. We conclude that the proposed LSTM method has a high potential for mapping tobacco planting in (sub)tropical regions using time series of S1 SAR data, and can be used as an alternative method for mapping the planting of other crop types from remote sensing images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助皮代谷采纳,获得10
刚刚
1秒前
东方欲晓关注了科研通微信公众号
4秒前
4秒前
柒_l发布了新的文献求助10
6秒前
科研通AI6.1应助29采纳,获得10
6秒前
孙皓阳发布了新的文献求助10
6秒前
7秒前
调皮飞雪发布了新的文献求助10
7秒前
义气的钥匙完成签到,获得积分10
8秒前
CodeCraft应助謓言采纳,获得10
9秒前
小明发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
13秒前
13秒前
FashionBoy应助孙皓阳采纳,获得10
13秒前
清卿子绾完成签到 ,获得积分10
14秒前
和abc发布了新的文献求助10
16秒前
木木发布了新的文献求助10
16秒前
17秒前
18秒前
攀登发布了新的文献求助30
18秒前
18秒前
cjlinhunu完成签到,获得积分10
20秒前
平淡小白菜完成签到,获得积分10
20秒前
20秒前
Garnieta完成签到,获得积分10
21秒前
张启凤完成签到,获得积分10
21秒前
22秒前
22秒前
美少女战士完成签到,获得积分10
22秒前
22秒前
謓言发布了新的文献求助10
23秒前
qiandi发布了新的文献求助10
25秒前
LEESO完成签到,获得积分10
25秒前
科研通AI6.1应助郭佳怡采纳,获得30
27秒前
456244yyy完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771671
求助须知:如何正确求助?哪些是违规求助? 5593024
关于积分的说明 15428138
捐赠科研通 4904964
什么是DOI,文献DOI怎么找? 2639092
邀请新用户注册赠送积分活动 1586960
关于科研通互助平台的介绍 1541911