软骨
再生(生物学)
明胶
透明质酸
弹性蛋白
化学
离体
组织工程
解剖
体内
医学
生物医学工程
体外
病理
生物化学
生物
生物技术
细胞生物学
作者
Abbas Shokri,Kousar Ramezani,Mohammad Reza Jamalpour,Chiman Mohammadi,Farshid Vahdatinia,Amin Doosti‐Irani,Esmaeel Sharifi,Rasool Haddadi,Shokoofeh Jamshidi,Leila Mohammadi Amirabad,Sanaz Tajik,Amir Yadegari,Lobat Tayebi
摘要
ABSTRACT Nasal septal cartilage perforations occur due to the different pathologies. Limited healing ability of cartilage results in remaining defects and further complications. This study sought to assess the efficacy of elastin–gelatin–hyaluronic acid (EGH) scaffolds for regeneration of nasal septal cartilage defects in rabbits. Defects (4 × 7 mm) were created in the nasal septal cartilage of 24 New Zealand rabbits. They were randomly divided into four groups: Group 1 was the control group with no further intervention, Group 2 received EGH scaffolds implanted in the defects, Group 3 received EGH scaffolds seeded with autologous auricular chondrocytes implanted in the defects, and Group 4 received EGH scaffolds seeded with homologous auricular chondrocytes implanted in the defects. After a 4‐month healing period, computed tomography (CT) and magnetic resonance imaging (MRI) scans were obtained from the nasal septal cartilage, followed by histological evaluations of new tissue formation. Maximum regeneration occurred in Group 2, according to CT, and Group 3, according to both T1 and T2 images with 7.68 ± 1.36, 5.44 ± 2.41, and 8.72 ± 3.02 mm 2 defect area respectively after healing. The difference in the defect size was statistically significant after healing between the experimental groups. Group 3 showed significantly greater regeneration according to CT scans and T1 and T2 images. The neocartilage formed over the underlying old cartilage with no distinct margin in histological evaluation. The EGH scaffolds have the capability of regeneration of nasal cartilage defects and are able to integrate with the existing cartilage; yet, they present the best results when pre‐seeded with autologous chondrocytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI