Ni-doping induced structure distortion of MnO2 for highly efficient Na+ storage

超级电容器 材料科学 阴极 化学工程 兴奋剂 离子 电容 电解质 储能 电极 功率密度 拉曼光谱 光电子学 化学 热力学 冶金 功率(物理) 物理化学 物理 光学 工程类 有机化学
作者
Shuyun Yao,Rui Zhao,Shiyu Wang,Yixiang Zhou,Ruochen Liu,Lingyuan Hu,Anqi Zhang,Ru Yang,Xia Liu,Zhenzhen Fu,Dewei Wang,Zhiyu Yang,Yi‐Ming Yan
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:429: 132521-132521 被引量:56
标识
DOI:10.1016/j.cej.2021.132521
摘要

Manganese dioxide is a typical electrode material for supercapacitor due to its high theoretical capacitance and good environmental compatibility. However, the development of MnO2 as electrode is limited by inferior conductivity, sluggish ionic transfer kinetics and poor cycling stability. Herein, we present a structure distortion strategy via Ni doping in MnO2 to boost its Na+ storage performance. The as-obtained Ni-MnO2 can deliver a high specific capacity of 379F g−1 at 1 A g−1, excellent rate performance of 281F g−1 at 20 A g−1, and a significantly enhanced cycling stability. In situ Raman results verify that Ni-MnO2 with structure distortion can achieve a promising cycling life. Density functional theory results suggest that the structure distortion can efficiently modulate electron configuration by delocalizing electron. Furthermore, the Na+ diffusion energy barrier is remarkedly decreased in Ni-MnO2, thus accelerating ionic transport kinetics. An asymmetric supercapacitor based on Ni-MnO2 cathode exhibits a high energy density of 114.6 Wh kg−1 at a power density of 3600 W kg−1. This work verifies the efficiency of structure distortion strategy on the improvement of Na ion storage performance in MnO2, which can be extended for the optimization of other electrode materials for energy storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏柯完成签到,获得积分10
刚刚
刚刚
XX完成签到,获得积分10
刚刚
刚刚
bkagyin应助满意语芙采纳,获得10
刚刚
黑猫乾杯应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得30
1秒前
Mic应助科研通管家采纳,获得10
1秒前
做科研的小施同学完成签到,获得积分10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得30
1秒前
小巧亦竹发布了新的文献求助10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得30
1秒前
小单发布了新的文献求助50
1秒前
王丽娟应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
Jared应助科研通管家采纳,获得10
1秒前
1秒前
妩媚的海应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
smottom应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
星月应助科研通管家采纳,获得20
1秒前
黑猫乾杯应助科研通管家采纳,获得10
2秒前
科研通AI6应助Magic1987采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
王丽娟应助科研通管家采纳,获得10
2秒前
2秒前
Mic应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901