沸石
化学
催化作用
一氧化二氮
异构化
金属
无机化学
穆斯堡尔谱学
活动站点
光化学
氧化物
结晶学
有机化学
作者
Max L. Bols,Benjamin E. R. Snyder,Hannah M. Rhoda,Pieter Cnudde,Ghinwa Fayad,Robert A. Schoonheydt,Véronique Van Speybroeck,Edward I. Solomon,Bert F. Sels
出处
期刊:Nature Catalysis
[Springer Nature]
日期:2021-04-22
卷期号:4 (4): 332-340
被引量:76
标识
DOI:10.1038/s41929-021-00602-4
摘要
Iron-containing zeolites are heterogeneous catalysts that exhibit remarkable activity in the selective oxidation of inert hydrocarbons and catalytic decomposition of nitrous oxide (N2O). The reduction of N2O is critical to both these functions, but experimental data tracking the iron active sites during N2O binding and activation are limited. Here, the N2O-ligated Fe(ii) active site in iron-exchanged zeolite beta is isolated and characterized by variable-temperature Mössbauer, diffuse reflectance UV-vis-NIR and Fourier transform infrared spectroscopy. N2O binds through the terminal nitrogen atom with substantial backbonding from the Fe(ii) centre at low temperature. At higher temperatures, the Fe–N2O interaction is weakened, facilitating isomerization to the O-bound form, which is competent in O-atom transfer. Density functional theory calculations show the geometric and electronic structure requirements for N2O binding and activation. A geometric distortion imposed by the zeolite lattice plays an important role in activating N2O. This highlights a mechanism for structural control over function in Fe-zeolite catalysts. Nitrous-oxide-mediated oxidation reactions can be effectively promoted by iron-containing zeolites, although structural information on the interaction between oxidant and metal centre is limited. Here, the authors report the characterization of the N2O-ligated Fe(ii) active site in iron-exchanged zeolite beta.
科研通智能强力驱动
Strongly Powered by AbleSci AI