Real-Time Full-Chip Thermal Tracking: A Post-Silicon, Machine Learning Perspective

计算机科学 离散余弦变换 炸薯条 推论 跟踪(教育) 过程(计算) 人工智能 计算机工程 机器学习 图像(数学) 心理学 教育学 电信 操作系统
作者
Sheriff Sadiqbatcha,Jinwei Zhang,Hussam Amrouch,Sheldon X.-D. Tan
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:15
标识
DOI:10.1109/tc.2021.3086112
摘要

This article presents a novel approach to real-time tracking of full-chip heatmaps for off-the-shelf microprocessors based on machine-learning. The proposed post-silicon approach, named RealMaps, only uses the existing temperature sensors and workload-independent utilization information. RealMaps does not require any knowledge of the proprietary design or manufacturing process-specific details of the chip. Consequently, the methods presented in this work can be implemented by either the original chip manufacturer or a third party alike. The approach involves offline acquisition of spatial heatmaps using a thermal imaging setup. To build the dynamic thermal model, a temporal-aware long-short-term-memory neutral network is trained with system-level features as inputs. 2D discrete cosine transformation (DCT) is performed on the heatmaps so that they can be expressed with just a few dominant DCT coefficients. This allows the model to be built to estimate just the dominant spatial features of the heatmaps, rather than the entire heatmap images, making it significantly more efficient. Experimental results from two commercial chips show that RealMaps can estimate the full-chip heatmaps with 0.9C and 1.2C root-mean-square-error respectively and take only 0.4ms for each inference. Compared to the state of the art pre-silicon approach, RealMaps shows similar accuracy, but with much less computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
知足肠乐发布了新的文献求助10
1秒前
1秒前
vikoel发布了新的文献求助10
1秒前
123456发布了新的文献求助10
1秒前
清梦完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
huanhuan发布了新的文献求助10
5秒前
m1343513037发布了新的文献求助10
6秒前
诡瞳GT发布了新的文献求助10
8秒前
Ava应助Yi采纳,获得10
8秒前
科研通AI5应助心中的马鞍采纳,获得10
9秒前
10秒前
sbrcpyf发布了新的文献求助10
10秒前
11秒前
bkagyin应助肱二头肌又大了采纳,获得10
12秒前
小羊驼肖恩完成签到,获得积分10
12秒前
小赖发布了新的文献求助20
14秒前
丘比特应助甜蜜访天采纳,获得10
15秒前
wen完成签到,获得积分10
15秒前
15秒前
共享精神应助科研通管家采纳,获得10
16秒前
lier应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
杳鸢应助科研通管家采纳,获得10
16秒前
杳鸢应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
Yancent应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
杳鸢应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
暴躁四叔应助科研通管家采纳,获得20
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515510
求助须知:如何正确求助?哪些是违规求助? 3097850
关于积分的说明 9236939
捐赠科研通 2792825
什么是DOI,文献DOI怎么找? 1532705
邀请新用户注册赠送积分活动 712209
科研通“疑难数据库(出版商)”最低求助积分说明 707201