阴极
钒
水溶液
材料科学
电化学
无机化学
无定形固体
氧化钒
氧化还原
锌
化学
电极
冶金
结晶学
物理化学
作者
Bobae Ju,Hee Jo Song,Yoon Hyun-seok,Dong‐Wan Kim
标识
DOI:10.1016/j.cej.2021.130528
摘要
Aqueous zinc-ion batteries (aqZIBs) are low cost and highly safe; however, the development of optimal cathode materials for them is challenging. Although layered vanadium oxides with high specific capacity have been extensively used as an aqZIB cathode material, the applicability of layered VO2·0.5H2O (VOH) as an aqZIB cathode material has not been investigated. In this light, herein, the electrochemical properties of a VOH cathode, prepared by a facile hydrothermal process, were examined and the applicability of the VOH cathode in aqZIBs was verified. VOH was electrochemically oxidized at high voltage during pre-charging; anodic oxidation caused a change in the valence state of VOH and induced an unexpected crystalline-to-amorphous phase transformation. Furthermore, the insertion of water in the pyramidal VO5 framework of oxidized VOH (ox-VOH) facilitated the highly reversible V3+/V5+ redox reaction with Zn ions. Moreover, ox-VOH was found to possess a highly stable amorphous phase and achieved high diffusion-controlled contribution at a low current density (50 mA g−1), affording superior, and stable long-term cyclability with ~88% retention after 240 cycles. These achievements signify a new milestone in developing suitable cathodes for high-performance aqZIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI