Value of radiomics model based on multi-parametric magnetic resonance imaging in predicting epidermal growth factor receptor mutation status in patients with lung adenocarcinoma

医学 放射基因组学 无线电技术 有效扩散系数 列线图 磁共振成像 肺癌 腺癌 表皮生长因子受体 逻辑回归 放射科 肿瘤科 内科学 核医学 癌症
作者
Yuze Wang,Qing Wan,Xiaoying Xia,Jianfeng Hu,Yuting Liao,Peng Wang,Yu Peng,Hongyan Liu,Xinchun Li
出处
期刊:Journal of Thoracic Disease [AME Publishing Company]
卷期号:13 (6): 3497-3508 被引量:6
标识
DOI:10.21037/jtd-20-3358
摘要

The epidermal growth factor receptor (EGFR) is an important therapeutic target for patients with non-small-cell lung cancer (NSCLC). Radiomics and radiogenomics have emerged as attractive research topics aiming to extract mineable high-dimensional features from medical images and show potential to correlate with the gene mutation. Herein, we aim to develop a magnetic resonance imaging (MRI)-based radiomics model for pretreatment prediction of the EGFR status in patients with lung adenocarcinoma.A total of 92 patients with pathologically confirmed lung adenocarcinoma were retrospectively enrolled in this study. EGFR genotype was analyzed by sequence testing. All patients were randomized into training and test group in a 7:3 ratio using the R software. Radiomics features were extracted from T2 weighted imaging (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC); radiomics signatures were built using the least absolute shrinkage and selection operator (LASSO) and logistic regression. Preoperative clinical factors and image features associated with EGFR were also evaluated. A nomogram including sex, smoking status, and radiomics signatures was constructed. A total of five radiomics models were built, and the area under the curve (AUC) was used to evaluate their performance of EGFR mutation prediction.Among the three single-sequence models, the ADC model showed the best prediction performance. The AUCs of the ADC, DWI, T2WI prediction model in the test cohort were 0.805 (95% CI: 0.610 to 1.000), 0.722 (95% CI: 0.519 to 0.924), and 0.655 (95% CI: 0.438 to 0.872), respectively. Compared with the single-sequence model, the multi-sequence prediction model showed better performed [AUCtest =0.838 (95% CI: 0.685 to 0.992)]. The AUC of the nomogram in the training group was 0.925 (95% CI: 0.855 to 0.994) and 0.727 (95% CI: 0.531 to 0.924) in the test group, respectively.The radiomics model based on MRI might have the potential to predict EGFR mutation in patients with lung adenocarcinoma. The multi-sequence model had better performance than other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sam完成签到,获得积分20
2秒前
4秒前
Luke完成签到,获得积分10
4秒前
jimskylxk完成签到,获得积分10
4秒前
高挑的幼翠完成签到 ,获得积分10
5秒前
5秒前
然463完成签到 ,获得积分10
6秒前
困敦发布了新的文献求助10
7秒前
7秒前
chen发布了新的文献求助10
8秒前
rrrick完成签到,获得积分10
8秒前
小涛发布了新的文献求助10
12秒前
JS32完成签到,获得积分10
12秒前
fg完成签到 ,获得积分20
12秒前
啦啦啦123完成签到,获得积分10
13秒前
党弛完成签到,获得积分10
14秒前
14秒前
刘佳佳完成签到 ,获得积分10
17秒前
wzwer123发布了新的文献求助10
17秒前
YYY666发布了新的文献求助10
19秒前
20秒前
科研通AI2S应助狂野白梅采纳,获得10
21秒前
用心若镜2发布了新的文献求助20
21秒前
方芳芳完成签到,获得积分10
24秒前
relexer应助wzwer123采纳,获得10
24秒前
爆米花应助背后的桐采纳,获得10
25秒前
研友_8K2QJZ完成签到,获得积分10
26秒前
爽爽完成签到 ,获得积分10
27秒前
困敦发布了新的文献求助10
27秒前
oceanao应助卜念采纳,获得10
28秒前
30秒前
xzwang完成签到,获得积分10
33秒前
秦李洋发布了新的文献求助10
34秒前
lpc完成签到 ,获得积分10
37秒前
小乖完成签到 ,获得积分10
37秒前
kryptonite完成签到 ,获得积分10
38秒前
39秒前
44秒前
烟花应助禾盒采纳,获得10
44秒前
44秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162987
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902734
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187