MOF derived double-carbon layers boosted the lithium/sodium storage performance of SnO2 nanoparticles

材料科学 氧化锡 化学工程 氧化物 锂(药物) 纳米颗粒 石墨 碳纤维 纳米技术 电化学 阳极 石墨烯 电极 复合数 复合材料 冶金 化学 工程类 内分泌学 物理化学 医学
作者
Shaoqing Zhu,Aoming Huang,Qian Wang,Yun Xu
出处
期刊:Nanotechnology [IOP Publishing]
卷期号:32 (30): 305403-305403 被引量:6
标识
DOI:10.1088/1361-6528/abf87b
摘要

Abstract Tin oxide (SnO 2 ) was considered as a promising alternative to commonly used graphite anode in energy storage devices thanks to its superior specific capacity. However, its electrochemical property was severely limited due to the inherent poor conductivity and drastic volume variation during the charging/discharging process. To overcome this disadvantage, we grew Sn-MOF directly on graphene oxide (GO) layers to synthesize a double carbon conductive network-encapsulated SnO 2 nanoparticles (SnO 2 /C/rGO) via a facile solvothermal method. During the process, Sn-MOF skeleton transformed into porous carbon shells, in which nanosized SnO 2 particles (~8nm) were embedded, while GO template was reduced to highly conductive rGO layer tightly wrapping the SnO 2 /C particles. This double-carbon structure endowed SnO 2 /C/rGO anode with enhanced specific capacity and rate property both in lithium ion batteries (LIB) and sodium ion batteries (SIB). The SnO 2 /C/rGO anode showed a highly reversible specific capacity of 1038.3 mAh g −1 at 100 mA g −1 , and maintained a stable capacity of 720.2 mAh g −1 (70.1%) under 500 mA g −1 after 150 cycles in LIBs. Similarly, highly reversible capacity of 350.7 mAh g −1 (81.1%) under 100 mA g −1 after 150 cycles was also achieved in SIBs. This work provided a promising strategy in improving the electrochemical properties of SnO 2 nanoparticles (NPs), as well as other potential anode materials suffering from huge volume change and poor conductivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
pangolin完成签到,获得积分20
2秒前
不认识完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
HC3发布了新的文献求助10
6秒前
Xiaojun发布了新的文献求助10
6秒前
qwf发布了新的文献求助10
7秒前
7秒前
成就的小熊猫完成签到,获得积分10
8秒前
岁岁菌完成签到,获得积分10
8秒前
9秒前
10秒前
Alyssa发布了新的文献求助10
10秒前
10秒前
乔谷雪应助听话的惜梦采纳,获得20
11秒前
球球完成签到 ,获得积分10
11秒前
开罐之夜发布了新的文献求助10
11秒前
kolico发布了新的文献求助10
11秒前
111发布了新的文献求助10
12秒前
李健的小迷弟应助Minnie22采纳,获得10
12秒前
Jasper应助qwf采纳,获得10
12秒前
lyh发布了新的文献求助10
12秒前
13秒前
空岛与影应助欣慰薯片采纳,获得10
13秒前
橘落完成签到 ,获得积分10
13秒前
14秒前
hfgeyt完成签到,获得积分10
14秒前
赘婿应助秋秋采纳,获得30
15秒前
15秒前
16秒前
16秒前
accept发布了新的文献求助10
16秒前
甘楽发布了新的文献求助10
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228623
求助须知:如何正确求助?哪些是违规求助? 2876441
关于积分的说明 8194980
捐赠科研通 2543571
什么是DOI,文献DOI怎么找? 1373838
科研通“疑难数据库(出版商)”最低求助积分说明 646860
邀请新用户注册赠送积分活动 621453