MOF derived double-carbon layers boosted the lithium/sodium storage performance of SnO2 nanoparticles

材料科学 氧化锡 化学工程 氧化物 锂(药物) 纳米颗粒 石墨 碳纤维 纳米技术 电化学 阳极 石墨烯 电极 复合数 复合材料 冶金 化学 工程类 内分泌学 物理化学 医学
作者
Shaoqing Zhu,Aoming Huang,Qian Wang,Yun Xu
出处
期刊:Nanotechnology [IOP Publishing]
卷期号:32 (30): 305403-305403 被引量:6
标识
DOI:10.1088/1361-6528/abf87b
摘要

Abstract Tin oxide (SnO 2 ) was considered as a promising alternative to commonly used graphite anode in energy storage devices thanks to its superior specific capacity. However, its electrochemical property was severely limited due to the inherent poor conductivity and drastic volume variation during the charging/discharging process. To overcome this disadvantage, we grew Sn-MOF directly on graphene oxide (GO) layers to synthesize a double carbon conductive network-encapsulated SnO 2 nanoparticles (SnO 2 /C/rGO) via a facile solvothermal method. During the process, Sn-MOF skeleton transformed into porous carbon shells, in which nanosized SnO 2 particles (~8nm) were embedded, while GO template was reduced to highly conductive rGO layer tightly wrapping the SnO 2 /C particles. This double-carbon structure endowed SnO 2 /C/rGO anode with enhanced specific capacity and rate property both in lithium ion batteries (LIB) and sodium ion batteries (SIB). The SnO 2 /C/rGO anode showed a highly reversible specific capacity of 1038.3 mAh g −1 at 100 mA g −1 , and maintained a stable capacity of 720.2 mAh g −1 (70.1%) under 500 mA g −1 after 150 cycles in LIBs. Similarly, highly reversible capacity of 350.7 mAh g −1 (81.1%) under 100 mA g −1 after 150 cycles was also achieved in SIBs. This work provided a promising strategy in improving the electrochemical properties of SnO 2 nanoparticles (NPs), as well as other potential anode materials suffering from huge volume change and poor conductivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anna完成签到,获得积分10
刚刚
深情安青应助稳重十三采纳,获得10
刚刚
1秒前
今后应助荡秋千的猴子采纳,获得10
1秒前
1秒前
顾矜应助呆萌的世德采纳,获得20
1秒前
量子星尘发布了新的文献求助10
2秒前
俏皮的宛宛完成签到,获得积分10
2秒前
拼搏的韭菜完成签到,获得积分20
4秒前
啦啦啦发布了新的文献求助10
4秒前
4秒前
郗关塚发布了新的文献求助10
5秒前
浮游应助默默的微笑采纳,获得10
5秒前
yuhan发布了新的文献求助30
5秒前
Orange应助令狐煜祺采纳,获得10
6秒前
6秒前
6秒前
共享精神应助内向含桃采纳,获得10
7秒前
7秒前
8秒前
领导范儿应助啦啦啦采纳,获得10
9秒前
10秒前
彭于晏应助吭哧吭哧采纳,获得10
10秒前
Libra完成签到,获得积分20
11秒前
十四季白发布了新的文献求助10
11秒前
在水一方应助spring采纳,获得10
11秒前
小马甲应助suise采纳,获得10
11秒前
11秒前
顾矜应助种喜欢的花采纳,获得10
11秒前
策略发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
13秒前
swslgd完成签到,获得积分10
13秒前
14秒前
华仔应助郗关塚采纳,获得10
14秒前
bjcyqz发布了新的文献求助10
15秒前
兜兜完成签到,获得积分10
15秒前
默默的微笑完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950123
求助须知:如何正确求助?哪些是违规求助? 4213072
关于积分的说明 13102608
捐赠科研通 3994857
什么是DOI,文献DOI怎么找? 2186618
邀请新用户注册赠送积分活动 1201904
关于科研通互助平台的介绍 1115269