Overview of Precoding Techniques for Massive MIMO

预编码 多输入多输出 算法 计算机科学 矩阵分解 晶格还原 迫零预编码 计算复杂性理论 可列斯基分解 共轭梯度法 数学 数学优化 特征向量 电信 频道(广播) 物理 量子力学
作者
Mahmoud A. Albreem,Alaa H. Al Habbash,Ammar M. Abu‐Hudrouss,Salama Ikki
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 60764-60801 被引量:80
标识
DOI:10.1109/access.2021.3073325
摘要

Massive multiple-input multiple-output (MIMO) is playing a crucial role in the fifth generation (5G) and beyond 5G (B5G) communication systems. Unfortunately, the complexity of massive MIMO systems is tremendously increased when a large number of antennas and radio frequency chains (RF) are utilized. Therefore, a plethora of research efforts has been conducted to find the optimal precoding algorithm with lowest complexity. The main aim of this paper is to provide insights on such precoding algorithms to a generalist of wireless communications. The added value of this paper is that the classification of massive MIMO precoding algorithms is provided with easily distinguishable classes of precoding solutions. This paper covers linear precoding algorithms starting with precoders based on approximate matrix inversion methods such as the truncated polynomial expansion (TPE), the Neumann series approximation (NSA), the Newton iteration (NI), and the Chebyshev iteration (CI) algorithms. The paper also presents the fixed-point iteration-based linear precoding algorithms such as the Gauss-Seidel (GS) algorithm, the successive over relaxation (SOR) algorithm, the conjugate gradient (CG) algorithm, and the Jacobi iteration (JI) algorithm. In addition, the paper reviews the direct matrix decomposition based linear precoding algorithms such as the QR decomposition and Cholesky decomposition (CD). The non-linear precoders are also presented which include the dirty-paper coding (DPC), Tomlinson-Harashima (TH), vector perturbation (VP), and lattice reduction aided (LR) algorithms. Due to the necessity to deal with a high consuming power by the base station (BS) with a large number of antennas in massive MIMO systems, a special subsection is included to describe the characteristics of the peak-to-average power ratio precoding (PAPR) algorithms such as the constant envelope (CE) algorithm, approximate message passing (AMP), and quantized precoding (QP) algorithms. This paper also reviews the machine learning role in precoding techniques. Although many precoding techniques are essentially proposed for a small-scale MIMO, they have been exploited in massive MIMO networks. Therefore, this paper presents the application of small-scale MIMO precoding techniques for massive MIMO. This paper demonstrates the precoding schemes in promising multiple antenna technologies such as the cell-free massive MIMO (CF-M-MIMO), beamspace massive MIMO, and intelligent reflecting surfaces (IRSs). In-depth discussion on the pros and cons, performance-complexity profile, and implementation solidity is provided. This paper also provides a discussion on the channel estimation and energy efficiency. This paper also presents potential future directions in massive MIMO precoding algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷炫服饰发布了新的文献求助10
1秒前
马雪荣关注了科研通微信公众号
2秒前
调皮的啊啊啊完成签到 ,获得积分20
7秒前
8秒前
SciGPT应助雯雯采纳,获得10
10秒前
11秒前
丘比特应助杨y123采纳,获得10
13秒前
落日飞鱼发布了新的文献求助10
13秒前
14秒前
pooolw完成签到,获得积分10
14秒前
Randy完成签到,获得积分10
15秒前
所所应助FZY采纳,获得10
15秒前
JamesPei应助黄宇腾采纳,获得10
16秒前
18秒前
Randy发布了新的文献求助10
19秒前
叙温雨发布了新的文献求助10
23秒前
科研通AI2S应助啦啦啦采纳,获得10
23秒前
25秒前
今后应助victorchen采纳,获得30
26秒前
王先森完成签到,获得积分10
27秒前
28秒前
lililili完成签到,获得积分10
28秒前
FashionBoy应助公冶立辉采纳,获得10
29秒前
陈陈发布了新的文献求助10
29秒前
共享精神应助公冶立辉采纳,获得10
29秒前
英俊的铭应助公冶立辉采纳,获得10
29秒前
英姑应助公冶立辉采纳,获得10
29秒前
bkagyin应助公冶立辉采纳,获得10
29秒前
丘比特应助公冶立辉采纳,获得10
29秒前
今后应助公冶立辉采纳,获得10
29秒前
29秒前
eeeee发布了新的文献求助10
33秒前
乐正如彤发布了新的文献求助20
33秒前
Lucas应助晊恦采纳,获得10
33秒前
122发布了新的文献求助10
36秒前
梅卡完成签到 ,获得积分10
37秒前
41秒前
上官若男应助松本润不足采纳,获得10
42秒前
852应助辣子鸡采纳,获得10
42秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149387
求助须知:如何正确求助?哪些是违规求助? 2800406
关于积分的说明 7840028
捐赠科研通 2458019
什么是DOI,文献DOI怎么找? 1308162
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706