Overview of Precoding Techniques for Massive MIMO

预编码 多输入多输出 算法 计算机科学 矩阵分解 晶格还原 迫零预编码 计算复杂性理论 可列斯基分解 共轭梯度法 数学 数学优化 特征向量 电信 频道(广播) 物理 量子力学
作者
Mahmoud A. Albreem,Alaa H. Al Habbash,Ammar M. Abu‐Hudrouss,Salama Ikki
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 60764-60801 被引量:80
标识
DOI:10.1109/access.2021.3073325
摘要

Massive multiple-input multiple-output (MIMO) is playing a crucial role in the fifth generation (5G) and beyond 5G (B5G) communication systems. Unfortunately, the complexity of massive MIMO systems is tremendously increased when a large number of antennas and radio frequency chains (RF) are utilized. Therefore, a plethora of research efforts has been conducted to find the optimal precoding algorithm with lowest complexity. The main aim of this paper is to provide insights on such precoding algorithms to a generalist of wireless communications. The added value of this paper is that the classification of massive MIMO precoding algorithms is provided with easily distinguishable classes of precoding solutions. This paper covers linear precoding algorithms starting with precoders based on approximate matrix inversion methods such as the truncated polynomial expansion (TPE), the Neumann series approximation (NSA), the Newton iteration (NI), and the Chebyshev iteration (CI) algorithms. The paper also presents the fixed-point iteration-based linear precoding algorithms such as the Gauss-Seidel (GS) algorithm, the successive over relaxation (SOR) algorithm, the conjugate gradient (CG) algorithm, and the Jacobi iteration (JI) algorithm. In addition, the paper reviews the direct matrix decomposition based linear precoding algorithms such as the QR decomposition and Cholesky decomposition (CD). The non-linear precoders are also presented which include the dirty-paper coding (DPC), Tomlinson-Harashima (TH), vector perturbation (VP), and lattice reduction aided (LR) algorithms. Due to the necessity to deal with a high consuming power by the base station (BS) with a large number of antennas in massive MIMO systems, a special subsection is included to describe the characteristics of the peak-to-average power ratio precoding (PAPR) algorithms such as the constant envelope (CE) algorithm, approximate message passing (AMP), and quantized precoding (QP) algorithms. This paper also reviews the machine learning role in precoding techniques. Although many precoding techniques are essentially proposed for a small-scale MIMO, they have been exploited in massive MIMO networks. Therefore, this paper presents the application of small-scale MIMO precoding techniques for massive MIMO. This paper demonstrates the precoding schemes in promising multiple antenna technologies such as the cell-free massive MIMO (CF-M-MIMO), beamspace massive MIMO, and intelligent reflecting surfaces (IRSs). In-depth discussion on the pros and cons, performance-complexity profile, and implementation solidity is provided. This paper also provides a discussion on the channel estimation and energy efficiency. This paper also presents potential future directions in massive MIMO precoding algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助sss采纳,获得10
1秒前
卫慕凝完成签到,获得积分10
1秒前
二三语逢山外山完成签到 ,获得积分10
2秒前
3秒前
4秒前
hky发布了新的文献求助10
4秒前
小蛤蟆完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
orixero应助哈士奇大王采纳,获得10
6秒前
小涵完成签到,获得积分10
7秒前
田様应助lhy采纳,获得10
7秒前
kkpzc完成签到 ,获得积分10
7秒前
8秒前
西瓜完成签到,获得积分10
8秒前
duo完成签到,获得积分10
8秒前
感动板凳完成签到,获得积分10
8秒前
小树有点歪完成签到,获得积分10
9秒前
充电宝应助谣谣采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
FashionBoy应助甜晞采纳,获得10
11秒前
脑洞疼应助储明明采纳,获得10
11秒前
qphys完成签到,获得积分0
11秒前
复杂的毛巾完成签到 ,获得积分10
12秒前
13秒前
toutou应助xiaoma采纳,获得10
13秒前
14秒前
指天发布了新的文献求助10
15秒前
Antheali应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
eric888应助科研通管家采纳,获得30
15秒前
感动板凳发布了新的文献求助10
16秒前
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
16秒前
Antheali应助科研通管家采纳,获得10
16秒前
jyzzz应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761403
求助须知:如何正确求助?哪些是违规求助? 5529568
关于积分的说明 15399526
捐赠科研通 4897872
什么是DOI,文献DOI怎么找? 2634529
邀请新用户注册赠送积分活动 1582632
关于科研通互助平台的介绍 1537922