静态随机存取存储器
瓶颈
计算机科学
宏
内存处理
冯·诺依曼建筑
计算机体系结构
内存体系结构
嵌入式系统
并行计算
计算机硬件
操作系统
搜索引擎
Web搜索查询
按示例查询
程序设计语言
情报检索
作者
Chuan-Jia Jhang,Cheng-Xin Xue,Je-Min Hung,Fu-Chun Chang,Meng‐Fan Chang
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers
[Institute of Electrical and Electronics Engineers]
日期:2021-05-01
卷期号:68 (5): 1773-1786
被引量:95
标识
DOI:10.1109/tcsi.2021.3064189
摘要
When applied to artificial intelligence edge devices, the conventionally von Neumann computing architecture imposes numerous challenges (e.g., improving the energy efficiency), due to the memory-wall bottleneck involving the frequent movement of data between the memory and the processing elements (PE). Computing-in-memory (CIM) is a promising candidate approach to breaking through this so-called memory wall bottleneck. SRAM cells provide unlimited endurance and compatibility with state-of-the-art logic processes. This paper outlines the background, trends, and challenges involved in the further development of SRAM-CIM macros. This paper also reviews recent silicon-verified SRAM-CIM macros designed for logic and multiplication-accumulation (MAC) operations.
科研通智能强力驱动
Strongly Powered by AbleSci AI