Sirtuin 3 Inhibition Targets AML Stem Cells through Perturbation of Fatty Acid Oxidation

锡尔图因 SIRT3 干细胞 癌症研究 生物 氧化磷酸化 髓样 NAD+激酶 癌细胞 癌症干细胞 活力测定 癌症 生物化学 细胞 细胞生物学 遗传学
作者
Cristiana O’Brien,Jacob M. Berman,Rachel Culp‐Hill,Julie A. Reisz,Tianyi Ling,Vincent Rondeau,Ari Melnick,Min Yang,Jun Young Hong,Hening Lin,Ari Melnick,Andrea Arruda,Mark D. Minden,Angelo D’Alessandro,Courtney L. Jones
出处
期刊:Blood [American Society of Hematology]
卷期号:138 (Supplement 1): 2240-2240 被引量:1
标识
DOI:10.1182/blood-2021-148143
摘要

Abstract Acute myeloid leukemia (AML) in adults has a 5-year survival of approximately 30% and a high rate of disease recurrence in part due to our inability to eliminate the disease-initiating leukemic stem cells (LSCs) (Shlush et al. Nature, 2017). Previous studies have shown that LSCs uniquely rely on oxidative phosphorylation (OXPHOS) for survival (Lagadinou et al. Cell Stem Cell, 2013). Thus, novel therapies that are designed to target LSC metabolism have the potential to improve patient outcomes. Work from our group and others has demonstrated that a critical metabolite for OXPHOS regulation in LSCs is the coenzyme NAD + (Jones et al. Cell Stem Cell, 2020; Mitchell et al. Blood Advances 2019). One family of NAD + dependent proteins important in cancer biology, and AML specifically (Yan et al. Blood Cancer Discovery, 2021), are sirtuins. To determine if any sirtuins are important in LSC function we knocked down each sirtuin family member (sirtuin 1-7) with siRNA in four primary AML specimens and measured viability and colony forming ability. Knockdown of sirtuin 3 (SIRT3) decreased viability and colony forming potential of all AML specimens tested. SIRT3 is a mitochondrial de-acetylase with a multi-faceted role in metabolic regulation and oncogenesis (Finley, et al. Trends in Molecular Medicine, 2016). SIRT3 interacts with pathways upstream of OXPHOS including the tricarboxylic acid (TCA) and fatty acid oxidation (FAO). Importantly, a SIRT3 inhibitor (YC8-02) has been developed and has been shown to be effective pre-clinically for the treatment of B-cell lymphoma (Li et al. Cancer Cell, 2019). To further understand the significance of SIRT3 in LSCs, we assessed viability and colony forming potential upon YC8-02 treatment. LSCs were enriched from primary specimens based upon relative reactive oxygen species (ROS) level as previously described (Lagadinou et al. Cell Stem Cell, 2013). LSCs and blasts enriched from ten primary AML, and four AML cell lines (MOLM13, TEX, OCI-AML2, OCI-AML3) were cultured for 48 hours with or without YC8-02 before assessing viability and colony forming ability. YC8-02 treatment resulted in a significant decrease in colony forming potential of AML cells compared to control (data not shown). Similarly, LSCs, blasts, and cell lines showed a significant decrease in viability upon YC8-02 treatment (Fig 1A and data not shown). Cord blood and mobilized peripheral blood samples conversely did not show a change in colony forming potential following SIRT3 knockdown or YC8-02 treatment, respectively (data not shown). To assess YC8-02's effect on LSC function, three AML samples were treated with 10µM of drug for 24 hours and transplanted into NSG-S mice. YC8-02 treatment resulted in a significant decrease in AML engraftment, indicating a decrease in LSC function (Fig 1B). To determine the mechanism by which SIRT3 inhibition causes cell death, LSCs enriched from three primary specimens were treated with YC8-02; metabolite and lipid levels were determined by mass spectrometry. This analysis revealed a significant accumulation of fatty acids post YC8-02 treatment. To further characterize these changes, MOLM13 cells were treated with 13C 16-palmitic acid following 4 hours of incubation with 10µM YC8-02. Cells were collected 4 and 16 hours after introduction of palmitic acid and metabolic tracing was assessed by mass spectrometry. We found an accumulation of long and very long chain fatty acids and a decrease in TCA cycle intermediates (Fig 1C). FAO normally supplies TCA with intermediate acetyl-CoA; thus, these data indicate a decrease in FAO upon YC8-02 treatment. Accordingly, we measured changes in OXPHOS in response to treatment with YC8-02, in primary LSCs (Fig 1D) and AML cell lines (data not shown) and found a significant decrease in basal oxygen consumption. Further, ATP levels were significantly decreased upon YC8-02 treatment in LSCs (Fig 1E). In conclusion, we show that SIRT3 plays a pivotal role in FAO and LSC function. When SIRT3 is inhibited, FAO activity decreases resulting in the accumulation of long and very long chain fatty acids. This change in FAO activity reduces the availability of products for the TCA cycle, limiting necessary intermediates for OXPHOS, decreasing ATP production, and ultimately causing cell death. Therefore, our data suggests that SIRT3 is a potential therapeutic target for LSCs and should be considered in future pre-clinical and clinical investigations. Figure 1 Figure 1. Disclosures Melnick: Constellation: Consultancy; Epizyme: Consultancy; Daiichi Sankyo: Research Funding; Sanofi: Research Funding; Janssen Pharmaceuticals: Research Funding; KDAC Pharma: Membership on an entity's Board of Directors or advisory committees. Minden: Astellas: Consultancy. D'Alessandro: Omix Thecnologies: Other: Co-founder; Rubius Therapeutics: Consultancy; Forma Therapeutics: Membership on an entity's Board of Directors or advisory committees.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
SHDeathlock发布了新的文献求助50
1秒前
乐乐应助hu970采纳,获得10
1秒前
单薄白薇完成签到,获得积分10
3秒前
陈杰发布了新的文献求助10
3秒前
3秒前
3秒前
小张张发布了新的文献求助10
3秒前
乐乐应助YAN采纳,获得10
4秒前
迷惘墨香完成签到 ,获得积分10
5秒前
5秒前
Cynthia发布了新的文献求助30
5秒前
共享精神应助shenyanlei采纳,获得10
6秒前
wwww发布了新的文献求助10
6秒前
蔡菜菜完成签到,获得积分10
7秒前
852应助小余采纳,获得10
7秒前
饱满秋完成签到,获得积分10
8秒前
夜白发布了新的文献求助20
8秒前
搜集达人应助明月清风采纳,获得10
8秒前
希夷发布了新的文献求助10
9秒前
9秒前
爆米花应助通~采纳,获得10
9秒前
苏靖完成签到,获得积分10
9秒前
luoyutian发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
科研通AI5应助猪猪采纳,获得10
10秒前
10秒前
海绵体宝宝应助an采纳,获得10
11秒前
wwww完成签到,获得积分10
11秒前
11秒前
桐桐应助柔弱凡松采纳,获得10
11秒前
爆米花应助丶呆久自然萌采纳,获得10
12秒前
12秒前
wanyanjin应助流云采纳,获得10
12秒前
心花怒放发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762