亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of data-driven machine learning to predict propranolol and trimethoprim removal using a managed aquifer recharge system

地下水补给 火星探测计划 含水层 多层感知器 环境科学 甲氧苄啶 机器学习 人工神经网络 计算机科学 化学 工程类 地下水 岩土工程 生物化学 物理 抗生素 天文
作者
Muhammad Yaqub,Soo Hyung Park,Eman Alzahrani,Abd‐ElAziem Farouk,Wontae Lee
出处
期刊:Journal of environmental chemical engineering [Elsevier BV]
卷期号:10 (1): 106847-106847 被引量:14
标识
DOI:10.1016/j.jece.2021.106847
摘要

Owing to their persistent nature, pharmaceutical products (PPs) are emerging as potent water pollutants. Here, experimental and data-driven modeling, specifically multilayer perceptron (MLP) neural networking and gene expression programming (GEP), was employed to predict the removal of the most common antihypertensive and antibiotic drugs, namely propranolol and trimethoprim, from reclaimed water (RW) through a managed aquifer recharge system (MARS). The characteristics of RW and soil used as the column medium, including operating time (days); pH; dissolved organic carbon; electrical conductivity; and concentration of nitrogen dioxide, nitrate, sulfate, ferrous, chloride, and manganese, were included as the input parameters and removal of the selected PPs as the model output. A dataset was created through an experimental study conducted over a year of continuous operation of MARS to predict the removal of the selected PPs. MLP and GEP models were developed for one of the selected PPs and tested for the other to determine model reliability. The developed models were assessed using statistical performance matrices. The experimental results showed over 80% propranolol and trimethoprim removal from RW through MARS. The proposed GEP predictive models for propranolol and trimethoprim removal showed higher accuracy (R2 = 0.91 and 0.87, respectively) than the MLP models (R2 = 0.827 and 0.756, respectively). Therefore, the proposed GEP models provide better predictions and mathematical relationships for future studies. Thus, data-driven machine learning models can predict the removal of specific PPs from RW through MARS and minimize the experimental workload.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Ava应助CMY采纳,获得10
10秒前
Sandy举报yan求助涉嫌违规
10秒前
Qian完成签到 ,获得积分10
31秒前
Kashing完成签到,获得积分10
34秒前
小透明发布了新的文献求助10
36秒前
量子星尘发布了新的文献求助10
47秒前
Sandy举报卷筒洗衣机求助涉嫌违规
48秒前
sleet完成签到 ,获得积分10
50秒前
1分钟前
摇摇奶昔完成签到,获得积分20
1分钟前
Everything发布了新的文献求助10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
yx_cheng应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助200
2分钟前
Everything完成签到,获得积分10
2分钟前
像个间谍发布了新的文献求助10
3分钟前
3分钟前
清风明月完成签到 ,获得积分10
3分钟前
比比谁的速度快应助Zephyr采纳,获得200
3分钟前
yx_cheng应助科研通管家采纳,获得10
3分钟前
3分钟前
跳跃毒娘发布了新的文献求助10
4分钟前
充电宝应助风中的飞机采纳,获得10
4分钟前
尘远知山静完成签到 ,获得积分10
4分钟前
haprier完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
lxh发布了新的文献求助10
4分钟前
李健应助lxh采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
杨柳发布了新的文献求助10
5分钟前
yx_cheng应助科研通管家采纳,获得10
5分钟前
桦奕兮完成签到 ,获得积分10
5分钟前
像个间谍完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
思源应助杨柳采纳,获得10
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008151
求助须知:如何正确求助?哪些是违规求助? 3547956
关于积分的说明 11298612
捐赠科研通 3282865
什么是DOI,文献DOI怎么找? 1810219
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188