Application of data-driven machine learning to predict propranolol and trimethoprim removal using a managed aquifer recharge system

地下水补给 火星探测计划 含水层 多层感知器 环境科学 甲氧苄啶 机器学习 人工神经网络 计算机科学 化学 工程类 地下水 岩土工程 生物化学 物理 抗生素 天文
作者
Muhammad Yaqub,Soo Hyung Park,Eman Alzahrani,Abd‐ElAziem Farouk,Wontae Lee
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:10 (1): 106847-106847 被引量:14
标识
DOI:10.1016/j.jece.2021.106847
摘要

Owing to their persistent nature, pharmaceutical products (PPs) are emerging as potent water pollutants. Here, experimental and data-driven modeling, specifically multilayer perceptron (MLP) neural networking and gene expression programming (GEP), was employed to predict the removal of the most common antihypertensive and antibiotic drugs, namely propranolol and trimethoprim, from reclaimed water (RW) through a managed aquifer recharge system (MARS). The characteristics of RW and soil used as the column medium, including operating time (days); pH; dissolved organic carbon; electrical conductivity; and concentration of nitrogen dioxide, nitrate, sulfate, ferrous, chloride, and manganese, were included as the input parameters and removal of the selected PPs as the model output. A dataset was created through an experimental study conducted over a year of continuous operation of MARS to predict the removal of the selected PPs. MLP and GEP models were developed for one of the selected PPs and tested for the other to determine model reliability. The developed models were assessed using statistical performance matrices. The experimental results showed over 80% propranolol and trimethoprim removal from RW through MARS. The proposed GEP predictive models for propranolol and trimethoprim removal showed higher accuracy (R2 = 0.91 and 0.87, respectively) than the MLP models (R2 = 0.827 and 0.756, respectively). Therefore, the proposed GEP models provide better predictions and mathematical relationships for future studies. Thus, data-driven machine learning models can predict the removal of specific PPs from RW through MARS and minimize the experimental workload.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大气的秋完成签到,获得积分10
2秒前
劲秉应助tt采纳,获得20
2秒前
脑洞疼应助zychaos采纳,获得10
2秒前
2秒前
3秒前
我是老大应助听毛细胞Hey采纳,获得10
3秒前
4秒前
4秒前
椰子树完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
fan发布了新的文献求助10
6秒前
壮观以松发布了新的文献求助10
6秒前
6秒前
6秒前
wlh256完成签到,获得积分20
6秒前
7秒前
8秒前
8秒前
8秒前
沿途一天完成签到,获得积分10
9秒前
10秒前
10秒前
阔达碧空发布了新的文献求助10
10秒前
1123发布了新的文献求助10
11秒前
11秒前
粟米发布了新的文献求助30
11秒前
11秒前
Hanna完成签到,获得积分20
12秒前
zychaos发布了新的文献求助10
12秒前
微微完成签到,获得积分10
13秒前
八九完成签到,获得积分10
13秒前
CMM发布了新的文献求助10
14秒前
14秒前
qipupu222完成签到 ,获得积分10
14秒前
搜集达人应助顺利毕业版采纳,获得10
15秒前
霜降发布了新的文献求助10
15秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469657
求助须知:如何正确求助?哪些是违规求助? 3062868
关于积分的说明 9080250
捐赠科研通 2753067
什么是DOI,文献DOI怎么找? 1510691
科研通“疑难数据库(出版商)”最低求助积分说明 697975
邀请新用户注册赠送积分活动 697938