Contextual inference underlies the learning of sensorimotor repertoires

推论 背景(考古学) 计算机科学 集合(抽象数据类型) 运动学习 一致性(知识库) 钥匙(锁) 认知科学 剧目 认知心理学 适应(眼睛) 人工智能 心理学 神经科学 生物 古生物学 程序设计语言 物理 计算机安全 声学
作者
James B. Heald,Máté Lengyel,Máté Lengyel
出处
期刊:Nature [Springer Nature]
卷期号:600 (7889): 489-493 被引量:116
标识
DOI:10.1038/s41586-021-04129-3
摘要

Humans spend a lifetime learning, storing and refining a repertoire of motor memories. For example, through experience, we become proficient at manipulating a large range of objects with distinct dynamical properties. However, it is unknown what principle underlies how our continuous stream of sensorimotor experience is segmented into separate memories and how we adapt and use this growing repertoire. Here we develop a theory of motor learning based on the key principle that memory creation, updating and expression are all controlled by a single computation—contextual inference. Our theory reveals that adaptation can arise both by creating and updating memories (proper learning) and by changing how existing memories are differentially expressed (apparent learning). This insight enables us to account for key features of motor learning that had no unified explanation: spontaneous recovery1, savings2, anterograde interference3, how environmental consistency affects learning rate4,5 and the distinction between explicit and implicit learning6. Critically, our theory also predicts new phenomena—evoked recovery and context-dependent single-trial learning—which we confirm experimentally. These results suggest that contextual inference, rather than classical single-context mechanisms1,4,7–9, is the key principle underlying how a diverse set of experiences is reflected in our motor behaviour. A theory of motor learning based on the principle of contextual inference reveals that adaptation can arise by both creating and updating memories and changing how existing memories are differentially expressed, and predicts evoked recovery and context-dependent single-trial learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小马甲应助细腻沅采纳,获得10
1秒前
2秒前
招财不肥完成签到,获得积分10
2秒前
2秒前
77完成签到,获得积分10
3秒前
NexusExplorer应助顾阿秀采纳,获得10
3秒前
3秒前
科研通AI5应助二二二采纳,获得10
4秒前
terrell完成签到,获得积分10
4秒前
David完成签到,获得积分10
4秒前
4秒前
科研通AI2S应助Denmark采纳,获得10
5秒前
5秒前
望望旺仔牛奶完成签到,获得积分10
5秒前
香蕉觅云应助luoshi采纳,获得10
6秒前
Zn应助gnr2000采纳,获得10
6秒前
二小完成签到,获得积分20
6秒前
拼搏思卉完成签到,获得积分10
6秒前
内向音响发布了新的文献求助10
6秒前
上官若男应助曼尼采纳,获得10
7秒前
飞羽发布了新的文献求助10
7秒前
科研通AI2S应助song99采纳,获得10
7秒前
momi完成签到 ,获得积分10
7秒前
哈哈哈呢完成签到 ,获得积分20
7秒前
LiShin发布了新的文献求助10
7秒前
phylicia发布了新的文献求助10
8秒前
萝卜完成签到,获得积分10
8秒前
8秒前
sjj完成签到,获得积分10
9秒前
只道寻常发布了新的文献求助10
9秒前
灵巧坤完成签到,获得积分20
10秒前
澹台灭明完成签到,获得积分10
10秒前
含蓄的鹤发布了新的文献求助10
10秒前
K. G.完成签到,获得积分0
10秒前
张云雷的大闸蟹完成签到,获得积分20
10秒前
10秒前
11秒前
12秒前
化学狗完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762