Contextual inference underlies the learning of sensorimotor repertoires

推论 背景(考古学) 计算机科学 集合(抽象数据类型) 运动学习 一致性(知识库) 钥匙(锁) 认知科学 剧目 认知心理学 适应(眼睛) 人工智能 心理学 神经科学 生物 古生物学 程序设计语言 物理 计算机安全 声学
作者
James B. Heald,Máté Lengyel,Daniel M. Wolpert
出处
期刊:Nature [Springer Nature]
卷期号:600 (7889): 489-493 被引量:151
标识
DOI:10.1038/s41586-021-04129-3
摘要

Humans spend a lifetime learning, storing and refining a repertoire of motor memories. For example, through experience, we become proficient at manipulating a large range of objects with distinct dynamical properties. However, it is unknown what principle underlies how our continuous stream of sensorimotor experience is segmented into separate memories and how we adapt and use this growing repertoire. Here we develop a theory of motor learning based on the key principle that memory creation, updating and expression are all controlled by a single computation—contextual inference. Our theory reveals that adaptation can arise both by creating and updating memories (proper learning) and by changing how existing memories are differentially expressed (apparent learning). This insight enables us to account for key features of motor learning that had no unified explanation: spontaneous recovery1, savings2, anterograde interference3, how environmental consistency affects learning rate4,5 and the distinction between explicit and implicit learning6. Critically, our theory also predicts new phenomena—evoked recovery and context-dependent single-trial learning—which we confirm experimentally. These results suggest that contextual inference, rather than classical single-context mechanisms1,4,7–9, is the key principle underlying how a diverse set of experiences is reflected in our motor behaviour. A theory of motor learning based on the principle of contextual inference reveals that adaptation can arise by both creating and updating memories and changing how existing memories are differentially expressed, and predicts evoked recovery and context-dependent single-trial learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仓鼠侠发布了新的文献求助10
刚刚
在水一方应助HAOHAO采纳,获得10
刚刚
左转驳回了cc应助
1秒前
2秒前
2秒前
三岁居居完成签到,获得积分10
2秒前
虚拟的秋寒完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
顺心的鲂完成签到,获得积分10
4秒前
xiaojie完成签到 ,获得积分10
4秒前
mookie发布了新的文献求助30
4秒前
5秒前
学习的鹿完成签到,获得积分10
5秒前
1661321476完成签到,获得积分10
6秒前
7秒前
雨阳完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
舒心流沙完成签到 ,获得积分20
8秒前
桐桐应助世安采纳,获得10
8秒前
英俊的铭应助wzc采纳,获得10
9秒前
阿宝完成签到,获得积分10
9秒前
bkagyin应助搞笑有毅力采纳,获得10
10秒前
FAIRY完成签到,获得积分10
10秒前
10秒前
ZCZD发布了新的文献求助30
10秒前
xuxuux发布了新的文献求助10
11秒前
11秒前
kingwill发布了新的文献求助20
11秒前
11秒前
hi_traffic发布了新的文献求助10
12秒前
二柱子发布了新的文献求助10
12秒前
12秒前
淡然幻波完成签到,获得积分10
13秒前
知了完成签到 ,获得积分10
13秒前
1111111发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718285
求助须知:如何正确求助?哪些是违规求助? 5251746
关于积分的说明 15285174
捐赠科研通 4868514
什么是DOI,文献DOI怎么找? 2614220
邀请新用户注册赠送积分活动 1564054
关于科研通互助平台的介绍 1521548