Contextual inference underlies the learning of sensorimotor repertoires

推论 背景(考古学) 计算机科学 集合(抽象数据类型) 运动学习 一致性(知识库) 钥匙(锁) 认知科学 剧目 认知心理学 适应(眼睛) 人工智能 心理学 神经科学 生物 古生物学 程序设计语言 物理 计算机安全 声学
作者
James B. Heald,Máté Lengyel,Máté Lengyel
出处
期刊:Nature [Springer Nature]
卷期号:600 (7889): 489-493 被引量:116
标识
DOI:10.1038/s41586-021-04129-3
摘要

Humans spend a lifetime learning, storing and refining a repertoire of motor memories. For example, through experience, we become proficient at manipulating a large range of objects with distinct dynamical properties. However, it is unknown what principle underlies how our continuous stream of sensorimotor experience is segmented into separate memories and how we adapt and use this growing repertoire. Here we develop a theory of motor learning based on the key principle that memory creation, updating and expression are all controlled by a single computation—contextual inference. Our theory reveals that adaptation can arise both by creating and updating memories (proper learning) and by changing how existing memories are differentially expressed (apparent learning). This insight enables us to account for key features of motor learning that had no unified explanation: spontaneous recovery1, savings2, anterograde interference3, how environmental consistency affects learning rate4,5 and the distinction between explicit and implicit learning6. Critically, our theory also predicts new phenomena—evoked recovery and context-dependent single-trial learning—which we confirm experimentally. These results suggest that contextual inference, rather than classical single-context mechanisms1,4,7–9, is the key principle underlying how a diverse set of experiences is reflected in our motor behaviour. A theory of motor learning based on the principle of contextual inference reveals that adaptation can arise by both creating and updating memories and changing how existing memories are differentially expressed, and predicts evoked recovery and context-dependent single-trial learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助小炮弹采纳,获得10
1秒前
1秒前
赵赵发布了新的文献求助10
2秒前
2秒前
3秒前
小李发布了新的文献求助10
3秒前
DONGDONG发布了新的文献求助10
4秒前
4秒前
Lucas应助犹豫大侠采纳,获得10
4秒前
yush应助00采纳,获得10
5秒前
lolo发布了新的文献求助10
5秒前
5秒前
5秒前
失眠语梦完成签到,获得积分10
5秒前
6秒前
豆豆应助西乡塘塘主采纳,获得10
6秒前
6秒前
12345发布了新的文献求助10
7秒前
董绮敏完成签到 ,获得积分10
7秒前
失眠语梦发布了新的文献求助10
8秒前
8秒前
9秒前
赞zan发布了新的文献求助10
9秒前
9秒前
大锤应助懵懂的鞯采纳,获得10
10秒前
srz楠楠完成签到,获得积分10
10秒前
微笑书白发布了新的文献求助10
10秒前
濮阳千易发布了新的文献求助10
11秒前
852应助Jonas采纳,获得10
12秒前
cdgbdfbsfdvsd完成签到,获得积分20
12秒前
13秒前
斯文败类应助迅速的访天采纳,获得10
14秒前
柯镇恶完成签到,获得积分10
14秒前
dou完成签到,获得积分10
14秒前
sunyexuan完成签到,获得积分10
15秒前
小炮弹发布了新的文献求助10
15秒前
15秒前
xiaoGuo应助joplinJIA采纳,获得10
16秒前
12345完成签到,获得积分10
16秒前
cdgbdfbsfdvsd发布了新的文献求助10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135885
求助须知:如何正确求助?哪些是违规求助? 2786652
关于积分的说明 7778992
捐赠科研通 2442900
什么是DOI,文献DOI怎么找? 1298731
科研通“疑难数据库(出版商)”最低求助积分说明 625219
版权声明 600870