可积系统
对称(几何)
转化(遗传学)
数学物理
孤子
物理
矩阵相似性
Boussinesq近似(浮力)
尺寸缩减
还原(数学)
一维空间
数学分析
量子力学
数学
偏微分方程
非线性系统
几何学
瑞利数
基因
化学
生物化学
自然对流
传热
出处
期刊:International Journal of Modern Physics B
[World Scientific]
日期:2021-11-27
卷期号:36 (01)
被引量:3
标识
DOI:10.1142/s0217979222500011
摘要
The nonlocal symmetry of the new integrable [Formula: see text]-dimensional Boussinesq equation is studied by the standard truncated Painlevé expansion. This nonlocal symmetry can be localized to the Lie point symmetry of the prolonged system by introducing two auxiliary dependent variables. The corresponding finite symmetry transformation and similarity reduction related to the nonlocal symmetry of the new integrable [Formula: see text]-dimensional Boussinesq equation are studied. The rational solution, the triangle solution, two solitoff-interaction solution and the soliton–cnoidal interaction solutions for the new [Formula: see text]-dimensional Boussinesq equation are presented analytically and graphically by selecting the proper arbitrary constants.
科研通智能强力驱动
Strongly Powered by AbleSci AI