可预测性
市场流动性
交易成本
股票市场
业务
金融经济学
库存(枪支)
资本资产定价模型
数据库事务
市场影响
经济
计量经济学
市场微观结构
财务
订单(交换)
计算机科学
古生物学
工程类
物理
生物
程序设计语言
机械工程
量子力学
马
作者
Markus Leippold,Qian Wang,Wenyu Zhou
标识
DOI:10.1016/j.jfineco.2021.08.017
摘要
We add to the emerging literature on empirical asset pricing in the Chinese stock market by building and analyzing a comprehensive set of return prediction factors using various machine learning algorithms. Contrasting previous studies for the US market, liquidity emerges as the most important predictor, leading us to closely examine the impact of transaction costs. The retail investors’ dominating presence positively affects short-term predictability, particularly for small stocks. Another feature that distinguishes the Chinese market from the US market is the high predictability of large stocks and state-owned enterprises over longer horizons. The out-of-sample performance remains economically significant after transaction costs.
科研通智能强力驱动
Strongly Powered by AbleSci AI