DeepAc4C: A convolutional neural network model with hybrid features composed of physicochemical patterns and distributed representation information for identification of N4-acetylcytidine in mRNA

人工智能 模式识别(心理学) 深度学习 机器学习 人工神经网络 代表(政治) 特征(语言学) 循环神经网络 鉴定(生物学)
作者
Chao Wang,Ying Ju,Quan Zou,Chen Lin
出处
期刊:Bioinformatics [Oxford University Press]
标识
DOI:10.1093/bioinformatics/btab611
摘要

Motivation N4-acetylcytidine (ac4C) is the only acetylation modification that has been characterized in eukaryotic RNA, and is correlated with various human diseases. Laboratory identification of ac4C is complicated by factors such as sample hydrolysis and high cost. Unfortunately, existing computational methods to identify ac4C do not achieve satisfactory performance. Results We developed a novel tool, DeepAc4C, which identifies ac4C using convolutional neural networks (CNNs) using hybrid features composed of physicochemical patterns and a distributed representation of nucleic acids. Our results show that the proposed model achieved better and more balanced performance than existing predictors. Furthermore, we evaluated the effect that specific features had on the model predictions and their interaction effects. Several interesting sequence motifs specific to ac4C were identified. Availability and implementation The webserver is freely accessible at https://webmalab.cn/, the source code and datasets are accessible at Zenodo with URL https://doi.org/10.5281/zenodo.5138047 and Github with URL https://github.com/wangchao-malab/DeepAc4C. Supplementary information Supplementary data are available at Bioinformatics online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等一下疾风劲草完成签到,获得积分20
1秒前
LIU完成签到 ,获得积分10
1秒前
杰杰杰杰完成签到,获得积分10
1秒前
Jon发布了新的文献求助10
2秒前
歪比八不发布了新的文献求助10
3秒前
香蕉觅云应助zqy采纳,获得10
3秒前
wp4455777完成签到,获得积分10
4秒前
6秒前
8秒前
10秒前
重重发布了新的文献求助10
10秒前
歪比八不完成签到,获得积分10
12秒前
SciGPT应助zzz采纳,获得10
12秒前
悄悄完成签到 ,获得积分10
13秒前
17608283832发布了新的文献求助10
15秒前
17秒前
文艺的访曼应助asdf采纳,获得10
17秒前
外向立辉完成签到,获得积分10
18秒前
19秒前
ss完成签到,获得积分10
20秒前
21秒前
可爱万怨完成签到,获得积分10
21秒前
22秒前
科目三应助科研通管家采纳,获得10
24秒前
yznfly应助科研通管家采纳,获得200
24秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
顾矜应助科研通管家采纳,获得10
24秒前
斯文败类应助科研通管家采纳,获得10
24秒前
只争朝夕应助squirrelcone采纳,获得10
24秒前
gkads发布了新的文献求助10
25秒前
搜集达人应助whs采纳,获得10
25秒前
隐形曼青应助千寻采纳,获得10
25秒前
26秒前
26秒前
26秒前
Lemonade完成签到,获得积分10
27秒前
27秒前
冷酷孤风发布了新的文献求助10
29秒前
maizencrna完成签到,获得积分10
29秒前
丘比特应助光轮2000采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563093
求助须知:如何正确求助?哪些是违规求助? 4647860
关于积分的说明 14683144
捐赠科研通 4590036
什么是DOI,文献DOI怎么找? 2518252
邀请新用户注册赠送积分活动 1491004
关于科研通互助平台的介绍 1462318