DeepAc4C: A convolutional neural network model with hybrid features composed of physicochemical patterns and distributed representation information for identification of N4-acetylcytidine in mRNA

人工智能 模式识别(心理学) 深度学习 机器学习 人工神经网络 代表(政治) 特征(语言学) 循环神经网络 鉴定(生物学)
作者
Chao Wang,Ying Ju,Quan Zou,Chen Lin
出处
期刊:Bioinformatics [Oxford University Press]
标识
DOI:10.1093/bioinformatics/btab611
摘要

Motivation N4-acetylcytidine (ac4C) is the only acetylation modification that has been characterized in eukaryotic RNA, and is correlated with various human diseases. Laboratory identification of ac4C is complicated by factors such as sample hydrolysis and high cost. Unfortunately, existing computational methods to identify ac4C do not achieve satisfactory performance. Results We developed a novel tool, DeepAc4C, which identifies ac4C using convolutional neural networks (CNNs) using hybrid features composed of physicochemical patterns and a distributed representation of nucleic acids. Our results show that the proposed model achieved better and more balanced performance than existing predictors. Furthermore, we evaluated the effect that specific features had on the model predictions and their interaction effects. Several interesting sequence motifs specific to ac4C were identified. Availability and implementation The webserver is freely accessible at https://webmalab.cn/, the source code and datasets are accessible at Zenodo with URL https://doi.org/10.5281/zenodo.5138047 and Github with URL https://github.com/wangchao-malab/DeepAc4C. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰太狼养的小灰灰完成签到,获得积分10
1秒前
巴拉巴拉完成签到,获得积分10
3秒前
4秒前
4秒前
zho应助呃呃采纳,获得10
5秒前
米妮完成签到,获得积分10
6秒前
6秒前
CipherSage应助wsff采纳,获得30
6秒前
Akim应助Myx采纳,获得10
6秒前
8秒前
qyj发布了新的文献求助10
9秒前
英俊的铭应助俭朴的又菡采纳,获得10
9秒前
山竹发布了新的文献求助10
10秒前
善学以致用应助mmyhn采纳,获得10
10秒前
高贵元瑶完成签到,获得积分10
10秒前
10秒前
幽默的蛋挞完成签到,获得积分10
12秒前
呆萌藏鸟应助Mannose采纳,获得10
14秒前
单薄电源发布了新的文献求助10
15秒前
15秒前
wanci应助LSM采纳,获得10
15秒前
冷酷向雪发布了新的文献求助10
17秒前
充电宝应助qyj采纳,获得10
17秒前
LARS应助大祭司哦啦采纳,获得10
22秒前
碧蓝恶天应助HR112采纳,获得50
22秒前
22秒前
22秒前
科目三应助sddq采纳,获得10
24秒前
单薄电源完成签到,获得积分10
26秒前
艾斯完成签到 ,获得积分10
26秒前
qyj完成签到,获得积分10
26秒前
maox1aoxin应助细心的语蓉采纳,获得30
26秒前
27秒前
柯柯啦啦发布了新的文献求助20
27秒前
大个应助WQ采纳,获得10
29秒前
hlchian完成签到,获得积分10
30秒前
Allen完成签到,获得积分10
32秒前
32秒前
35秒前
脑洞疼应助AoAoo采纳,获得10
37秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159847
求助须知:如何正确求助?哪些是违规求助? 2810808
关于积分的说明 7889521
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315173
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012