DeepAc4C: A convolutional neural network model with hybrid features composed of physicochemical patterns and distributed representation information for identification of N4-acetylcytidine in mRNA

人工智能 模式识别(心理学) 深度学习 机器学习 人工神经网络 代表(政治) 特征(语言学) 循环神经网络 鉴定(生物学)
作者
Chao Wang,Ying Ju,Quan Zou,Chen Lin
出处
期刊:Bioinformatics [Oxford University Press]
标识
DOI:10.1093/bioinformatics/btab611
摘要

Motivation N4-acetylcytidine (ac4C) is the only acetylation modification that has been characterized in eukaryotic RNA, and is correlated with various human diseases. Laboratory identification of ac4C is complicated by factors such as sample hydrolysis and high cost. Unfortunately, existing computational methods to identify ac4C do not achieve satisfactory performance. Results We developed a novel tool, DeepAc4C, which identifies ac4C using convolutional neural networks (CNNs) using hybrid features composed of physicochemical patterns and a distributed representation of nucleic acids. Our results show that the proposed model achieved better and more balanced performance than existing predictors. Furthermore, we evaluated the effect that specific features had on the model predictions and their interaction effects. Several interesting sequence motifs specific to ac4C were identified. Availability and implementation The webserver is freely accessible at https://webmalab.cn/, the source code and datasets are accessible at Zenodo with URL https://doi.org/10.5281/zenodo.5138047 and Github with URL https://github.com/wangchao-malab/DeepAc4C. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懵懂的小蜜蜂完成签到,获得积分10
1秒前
wantong发布了新的文献求助10
1秒前
xiaoming完成签到,获得积分10
1秒前
1秒前
冷暖自知完成签到 ,获得积分10
2秒前
浮游应助196yjl采纳,获得10
2秒前
2秒前
yangliwei完成签到,获得积分10
2秒前
科研顺利完成签到,获得积分10
3秒前
3秒前
小北完成签到,获得积分10
3秒前
4秒前
ioi发布了新的文献求助10
4秒前
5秒前
九月关注了科研通微信公众号
5秒前
5秒前
6秒前
朴实蛋挞完成签到,获得积分10
6秒前
轩儿轩完成签到 ,获得积分10
6秒前
赘婿应助繁荣的天玉采纳,获得10
6秒前
蛋卷完成签到,获得积分10
7秒前
7秒前
7秒前
鱼鱼鱼发布了新的文献求助10
8秒前
8秒前
NexusExplorer应助善良的血茗采纳,获得10
9秒前
能干哈密瓜完成签到,获得积分10
9秒前
10秒前
恒弟弟完成签到,获得积分10
10秒前
11秒前
NexusExplorer应助wish采纳,获得10
11秒前
苹果洋葱发布了新的文献求助10
11秒前
11秒前
英姑应助Perrylin718采纳,获得10
11秒前
JamesPei应助栀子采纳,获得10
13秒前
浮游应助栀子采纳,获得10
13秒前
naonao完成签到,获得积分10
13秒前
14秒前
好名字完成签到,获得积分10
14秒前
安德鲁完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434739
求助须知:如何正确求助?哪些是违规求助? 4547066
关于积分的说明 14205914
捐赠科研通 4467159
什么是DOI,文献DOI怎么找? 2448413
邀请新用户注册赠送积分活动 1439364
关于科研通互助平台的介绍 1416076