Inter-crystal scattering recovery of light-sharing PET detectors using convolutional neural networks

探测器 卷积神经网络 光电探测器 Crystal(编程语言) 光子 光学 散射 康普顿散射 蒙特卡罗方法 溶血酶- 计算机科学 物理 人工智能 光电子学 材料科学 闪烁体 数学 统计 程序设计语言
作者
Seung‐Eun Lee,Jae Sung Lee
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (18): 185004-185004 被引量:17
标识
DOI:10.1088/1361-6560/ac215d
摘要

Inter-crystal scattering (ICS) is a type of Compton scattering of photons from one crystal to adjacent crystals and causes inaccurate assignment of the annihilation photon interaction position in positron emission tomography (PET). Because ICS frequently occurs in highly light-shared PET detectors, its recovery is crucial for the spatial resolution improvement. In this study, we propose two different convolutional neural networks (CNNs) for ICS recovery, exploiting the good pattern recognition ability of CNN techniques. Using the signal distribution of a photosensor array as input, one network estimates the energy deposition in each crystal (ICS-eNet) and another network chooses the first-interacted crystal (ICS-cNet). We performed GATE Monte Carlo simulations with optical photon tracking to test PET detectors comprising different crystal arrays (8 × 8 to 21 × 21) with lengths of 20 mm and the same photosensor array (3 mm 8 × 8 array) covering an area of 25.8 × 25.8 mm2. For each detector design, we trained ICS-eNet and ICS-cNet and evaluated their respective performance. ICS-eNet accurately identified whether the events were ICS (accuracy > 90%) and selected interacted crystals (accuracy > 60%) with appropriate energy estimation performance (R2 > 0.7) in the 8 × 8, 12 × 12, and 16 × 16 arrays. ICS-cNet also exhibited satisfactory performance, which was less dependent on the crystal-to-sensor ratio, with an accuracy enhancement that exceeds 10% in selecting the first-interacted crystal and a reduction in error distances compared when no recovery was applied. Both ICS-eNet and ICS-cNet exhibited consistent performances under various optical property settings of the crystals. For spatial resolution measurements in PET rings, both networks achieved significant enhancements particularly for highly pixelated arrays. We also discuss approaches for training the networks in an actual experimental setup. This proof-of-concept study demonstrated the feasibility of CNNs for ICS recovery in various light-sharing designs to efficiently improve the spatial resolution of PET in various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善良星星完成签到 ,获得积分10
刚刚
maorongfu456完成签到,获得积分10
1秒前
1秒前
柚子发布了新的文献求助20
1秒前
hashtag完成签到,获得积分10
1秒前
Dr.Dream完成签到,获得积分10
2秒前
Millennial完成签到,获得积分10
3秒前
4秒前
yongfeng完成签到,获得积分10
4秒前
lx完成签到,获得积分10
5秒前
踏实志泽发布了新的文献求助10
5秒前
科研通AI2S应助迢迢万里采纳,获得10
6秒前
爱吃西瓜发布了新的文献求助10
6秒前
Azyyyy完成签到,获得积分10
7秒前
开朗的戎完成签到,获得积分10
7秒前
paul完成签到,获得积分10
7秒前
Xiny完成签到,获得积分10
8秒前
阿纯完成签到,获得积分10
8秒前
小松鼠完成签到 ,获得积分10
8秒前
善学以致用应助浮笙采纳,获得10
8秒前
自由莺完成签到 ,获得积分10
8秒前
Doc邓爱科研完成签到,获得积分10
8秒前
zsmj23发布了新的文献求助10
9秒前
冰儿菲菲完成签到,获得积分10
9秒前
廿七完成签到,获得积分10
9秒前
summer完成签到,获得积分10
9秒前
9秒前
如意以南发布了新的文献求助10
10秒前
reneeyan58完成签到,获得积分10
12秒前
大模型应助普渡药康采纳,获得10
12秒前
ZYN完成签到,获得积分10
13秒前
whisper完成签到,获得积分10
14秒前
chx2256120完成签到,获得积分10
15秒前
15秒前
爆米花应助勇敢牛牛采纳,获得30
15秒前
Muye完成签到,获得积分20
15秒前
AI完成签到,获得积分10
15秒前
如意以南完成签到,获得积分20
16秒前
呀呀呀呀完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158752
求助须知:如何正确求助?哪些是违规求助? 2809955
关于积分的说明 7884750
捐赠科研通 2468704
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012