Inter-crystal scattering recovery of light-sharing PET detectors using convolutional neural networks

探测器 卷积神经网络 光电探测器 Crystal(编程语言) 光子 光学 散射 康普顿散射 蒙特卡罗方法 溶血酶- 计算机科学 物理 人工智能 光电子学 材料科学 闪烁体 数学 统计 程序设计语言
作者
Seung‐Eun Lee,Jae Sung Lee
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (18): 185004-185004 被引量:17
标识
DOI:10.1088/1361-6560/ac215d
摘要

Inter-crystal scattering (ICS) is a type of Compton scattering of photons from one crystal to adjacent crystals and causes inaccurate assignment of the annihilation photon interaction position in positron emission tomography (PET). Because ICS frequently occurs in highly light-shared PET detectors, its recovery is crucial for the spatial resolution improvement. In this study, we propose two different convolutional neural networks (CNNs) for ICS recovery, exploiting the good pattern recognition ability of CNN techniques. Using the signal distribution of a photosensor array as input, one network estimates the energy deposition in each crystal (ICS-eNet) and another network chooses the first-interacted crystal (ICS-cNet). We performed GATE Monte Carlo simulations with optical photon tracking to test PET detectors comprising different crystal arrays (8 × 8 to 21 × 21) with lengths of 20 mm and the same photosensor array (3 mm 8 × 8 array) covering an area of 25.8 × 25.8 mm2. For each detector design, we trained ICS-eNet and ICS-cNet and evaluated their respective performance. ICS-eNet accurately identified whether the events were ICS (accuracy > 90%) and selected interacted crystals (accuracy > 60%) with appropriate energy estimation performance (R2 > 0.7) in the 8 × 8, 12 × 12, and 16 × 16 arrays. ICS-cNet also exhibited satisfactory performance, which was less dependent on the crystal-to-sensor ratio, with an accuracy enhancement that exceeds 10% in selecting the first-interacted crystal and a reduction in error distances compared when no recovery was applied. Both ICS-eNet and ICS-cNet exhibited consistent performances under various optical property settings of the crystals. For spatial resolution measurements in PET rings, both networks achieved significant enhancements particularly for highly pixelated arrays. We also discuss approaches for training the networks in an actual experimental setup. This proof-of-concept study demonstrated the feasibility of CNNs for ICS recovery in various light-sharing designs to efficiently improve the spatial resolution of PET in various applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Artin_Sun完成签到,获得积分10
2秒前
2秒前
华仔应助岳维芸采纳,获得10
2秒前
烟花应助岳维芸采纳,获得10
2秒前
yiyi完成签到,获得积分20
3秒前
杨二锤发布了新的文献求助10
3秒前
4秒前
4秒前
所所应助张巨锋采纳,获得10
5秒前
蓝天应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
5秒前
Wind应助科研通管家采纳,获得10
5秒前
5秒前
情怀应助科研通管家采纳,获得10
5秒前
litt应助科研通管家采纳,获得10
5秒前
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
李健的小迷弟应助金肆采纳,获得10
6秒前
11发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
可爱的函函应助gdh采纳,获得10
7秒前
7秒前
橘子发布了新的文献求助10
7秒前
8秒前
qqq完成签到 ,获得积分10
9秒前
猪猪猪发布了新的文献求助10
9秒前
李健的粉丝团团长应助Lin采纳,获得10
9秒前
10秒前
qiii发布了新的文献求助10
10秒前
10秒前
11秒前
yiyi发布了新的文献求助10
11秒前
12秒前
wx完成签到,获得积分20
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233