Electronic structures and defect properties of lithium-rich manganese-based ternary material Li<sub>1.208</sub>Ni<sub>0.333</sub>Co<sub>0.042</sub>Mn<sub>0.417</sub>O<sub>2</sub>

三元运算 材料科学 锂(药物) 价(化学) 结晶学 化学 计算机科学 医学 内分泌学 有机化学 程序设计语言
作者
Wenjun Huang,Ya-Ping Wang,Xinrui Cao,Shunqing Wu,Zi-Zhong Zhu
出处
期刊:Chinese Physics [Science Press]
卷期号:70 (20): 208201-208201
标识
DOI:10.7498/aps.70.20210398
摘要

Lithium-rich manganese-based ternary cathode material for lithium-ion batteries, Li<sub>1.208</sub>Ni<sub>0.333</sub>Co<sub>0.042</sub>Mn<sub>0.417</sub>O<sub>2</sub>, has excellent structural stability and electrochemical stability due to its high Ni content. In order to understand the physical properties of this lithium-rich material, its crystal structure, electronic structure and defect properties are calculated by employing the first-principles method based on the density functional theory. The obtained electronic structure shows that Li<sub>1.208</sub>Ni<sub>0.333</sub>Co<sub>0.042</sub>Mn<sub>0.417</sub>O<sub>2</sub> is a magnetic semiconductor with a direct band gap of 0.47 eV. The analysis of the electronic state suggests that the electronic state at the valence band maximum (VBM) is the hybridization of p<sub><i>x</i></sub>, p<sub><i>y</i></sub>, p<sub><i>z</i></sub> orbitals of oxygen and the d<sub><i>xy</i></sub>, d<sub><i>yz</i></sub>, d<sub><i>xz</i></sub> orbitals of Ni-atom. The electronic state at the conduction band minimum has similar characteristics to those at the VBM, however, part of Ni-<inline-formula><tex-math id="M5">\begin{document}${3{\rm{d}}}_{{x}^{2}-{y}^{2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M5.png"/></alternatives></inline-formula> and Mn-<inline-formula><tex-math id="M6">\begin{document}${3{\rm{d}}}_{{x}^{2}-{y}^{2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M6.png"/></alternatives></inline-formula>, and Mn-<inline-formula><tex-math id="M7">\begin{document}${3{\rm{d}}}_{yz}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M7.png"/></alternatives></inline-formula> also contribute to the electronic hybridizations. The charge density difference calculations indicate that the bonding between O and transition metal atoms are through the mixture of covalent bond with ionic bond. The vacancy formation of a single metal atom is also calculated. The results show that the volumes of the defect systems containing metal vacancies are all reduced in comparison with the volume of perfect lattice. The volume change is the largest for the formation of Mn-vacancy, while the volume is almost unchanged with Co atoms extracted. The vacancy formation energies of the metals are <i>E</i><sub>f</sub> (Mn) > <i>E</i><sub>f</sub> (Co) > <i>E</i><sub>f</sub> (Ni), and the vacancy formation energy of Mn is significantly higher than those of Ni and Co, indicating that the presence of Mn provides a major structural stability for the material. The calculated charge density differences also show that the formation of metal vacancies influences only the charge distribution of the oxygen atoms around the vacancy, showing the local character of the vacancy effect. Since the formation of metal vacancy breaks the bonding between the metal and the surrounding oxygen atoms, the O-2p states near the Fermi surface are significantly increased as shown in the calculated electronic density of states. Such a picture suggests that the electrons on oxygen atoms in vicinity of the metal vacancies become freer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llll关注了科研通微信公众号
1秒前
郑是在下完成签到 ,获得积分10
2秒前
cmmm完成签到 ,获得积分10
2秒前
伍德沃德完成签到 ,获得积分20
4秒前
4秒前
qql发布了新的文献求助10
5秒前
xiaxia发布了新的文献求助10
6秒前
路灯发布了新的文献求助10
7秒前
蓝波酱完成签到,获得积分20
7秒前
8秒前
8秒前
搜集达人应助bbdx采纳,获得10
9秒前
11秒前
小沐完成签到,获得积分10
11秒前
nana完成签到,获得积分10
13秒前
激动的八宝粥完成签到 ,获得积分10
14秒前
14秒前
科研通AI6应助落寞的易绿采纳,获得10
15秒前
善学以致用应助jerry采纳,获得10
16秒前
CHENXIN532完成签到,获得积分10
16秒前
爱笑小笼包完成签到,获得积分10
17秒前
修仙中应助行毅文采纳,获得10
19秒前
20秒前
20秒前
Optimistic发布了新的文献求助10
22秒前
烟花应助等待的谷波采纳,获得10
22秒前
22秒前
24秒前
Leon Lai发布了新的文献求助10
25秒前
26秒前
张梦宇发布了新的文献求助10
27秒前
28秒前
28秒前
Akim应助Fan采纳,获得10
29秒前
30秒前
31秒前
俊逸香岚完成签到,获得积分10
31秒前
良陈美景奈何天完成签到 ,获得积分10
32秒前
HughWang发布了新的文献求助10
33秒前
李爱国应助尊敬的雪珍采纳,获得10
33秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133536
求助须知:如何正确求助?哪些是违规求助? 4334655
关于积分的说明 13504255
捐赠科研通 4171630
什么是DOI,文献DOI怎么找? 2287267
邀请新用户注册赠送积分活动 1288167
关于科研通互助平台的介绍 1229009