Electronic structures and defect properties of lithium-rich manganese-based ternary material Li<sub>1.208</sub>Ni<sub>0.333</sub>Co<sub>0.042</sub>Mn<sub>0.417</sub>O<sub>2</sub>

三元运算 材料科学 锂(药物) 价(化学) 结晶学 化学 计算机科学 医学 有机化学 内分泌学 程序设计语言
作者
Wenjun Huang,Ya-Ping Wang,Xinrui Cao,Shunqing Wu,Zi-Zhong Zhu
出处
期刊:Chinese Physics [Science Press]
卷期号:70 (20): 208201-208201
标识
DOI:10.7498/aps.70.20210398
摘要

Lithium-rich manganese-based ternary cathode material for lithium-ion batteries, Li<sub>1.208</sub>Ni<sub>0.333</sub>Co<sub>0.042</sub>Mn<sub>0.417</sub>O<sub>2</sub>, has excellent structural stability and electrochemical stability due to its high Ni content. In order to understand the physical properties of this lithium-rich material, its crystal structure, electronic structure and defect properties are calculated by employing the first-principles method based on the density functional theory. The obtained electronic structure shows that Li<sub>1.208</sub>Ni<sub>0.333</sub>Co<sub>0.042</sub>Mn<sub>0.417</sub>O<sub>2</sub> is a magnetic semiconductor with a direct band gap of 0.47 eV. The analysis of the electronic state suggests that the electronic state at the valence band maximum (VBM) is the hybridization of p<sub><i>x</i></sub>, p<sub><i>y</i></sub>, p<sub><i>z</i></sub> orbitals of oxygen and the d<sub><i>xy</i></sub>, d<sub><i>yz</i></sub>, d<sub><i>xz</i></sub> orbitals of Ni-atom. The electronic state at the conduction band minimum has similar characteristics to those at the VBM, however, part of Ni-<inline-formula><tex-math id="M5">\begin{document}${3{\rm{d}}}_{{x}^{2}-{y}^{2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M5.png"/></alternatives></inline-formula> and Mn-<inline-formula><tex-math id="M6">\begin{document}${3{\rm{d}}}_{{x}^{2}-{y}^{2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M6.png"/></alternatives></inline-formula>, and Mn-<inline-formula><tex-math id="M7">\begin{document}${3{\rm{d}}}_{yz}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M7.png"/></alternatives></inline-formula> also contribute to the electronic hybridizations. The charge density difference calculations indicate that the bonding between O and transition metal atoms are through the mixture of covalent bond with ionic bond. The vacancy formation of a single metal atom is also calculated. The results show that the volumes of the defect systems containing metal vacancies are all reduced in comparison with the volume of perfect lattice. The volume change is the largest for the formation of Mn-vacancy, while the volume is almost unchanged with Co atoms extracted. The vacancy formation energies of the metals are <i>E</i><sub>f</sub> (Mn) > <i>E</i><sub>f</sub> (Co) > <i>E</i><sub>f</sub> (Ni), and the vacancy formation energy of Mn is significantly higher than those of Ni and Co, indicating that the presence of Mn provides a major structural stability for the material. The calculated charge density differences also show that the formation of metal vacancies influences only the charge distribution of the oxygen atoms around the vacancy, showing the local character of the vacancy effect. Since the formation of metal vacancy breaks the bonding between the metal and the surrounding oxygen atoms, the O-2p states near the Fermi surface are significantly increased as shown in the calculated electronic density of states. Such a picture suggests that the electrons on oxygen atoms in vicinity of the metal vacancies become freer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
txyy完成签到,获得积分10
刚刚
3秒前
桐桐应助lynn采纳,获得10
3秒前
3秒前
4秒前
雨树完成签到,获得积分10
4秒前
昏睡的蟠桃应助落后曲奇采纳,获得50
5秒前
趣乐多发布了新的文献求助10
6秒前
innocence@x完成签到,获得积分10
7秒前
sje发布了新的文献求助10
8秒前
9秒前
11秒前
Hey完成签到 ,获得积分10
12秒前
包容仙人掌完成签到,获得积分10
12秒前
睽阔完成签到 ,获得积分10
12秒前
趣乐多完成签到,获得积分10
13秒前
乐观的芫完成签到 ,获得积分10
14秒前
梦梦发布了新的文献求助10
15秒前
共享精神应助洞洞拐采纳,获得10
15秒前
Owen应助高兴的紫文采纳,获得10
15秒前
txyy发布了新的文献求助10
16秒前
乐观的芫发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
吉祥高趙发布了新的文献求助20
19秒前
梦梦完成签到,获得积分10
20秒前
无花果应助NZYPS采纳,获得10
21秒前
852应助羊毛采纳,获得10
21秒前
ding应助迷路的曼凡采纳,获得10
22秒前
HEX完成签到,获得积分10
22秒前
深情安青应助朴次次采纳,获得30
24秒前
24秒前
王海建完成签到,获得积分20
26秒前
善学以致用应助www采纳,获得10
26秒前
Owen应助wangxiaobin采纳,获得10
28秒前
koukeika完成签到,获得积分10
30秒前
Jasper应助yufeiji0626采纳,获得10
31秒前
浮游应助zk_orange采纳,获得10
32秒前
科研通AI6应助zk_orange采纳,获得10
32秒前
万能图书馆应助erlangenbio采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4574372
求助须知:如何正确求助?哪些是违规求助? 3994347
关于积分的说明 12365241
捐赠科研通 3667579
什么是DOI,文献DOI怎么找? 2021344
邀请新用户注册赠送积分活动 1055471
科研通“疑难数据库(出版商)”最低求助积分说明 942876