Electronic structures and defect properties of lithium-rich manganese-based ternary material Li<sub>1.208</sub>Ni<sub>0.333</sub>Co<sub>0.042</sub>Mn<sub>0.417</sub>O<sub>2</sub>

三元运算 材料科学 锂(药物) 价(化学) 结晶学 化学 计算机科学 医学 有机化学 内分泌学 程序设计语言
作者
Wenjun Huang,Ya-Ping Wang,Xinrui Cao,Shunqing Wu,Zhaowu Zhu
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:70 (20): 208201-208201
标识
DOI:10.7498/aps.70.20210398
摘要

Lithium-rich manganese-based ternary cathode material for lithium-ion batteries, Li<sub>1.208</sub>Ni<sub>0.333</sub>Co<sub>0.042</sub>Mn<sub>0.417</sub>O<sub>2</sub>, has excellent structural stability and electrochemical stability due to its high Ni content. In order to understand the physical properties of this lithium-rich material, its crystal structure, electronic structure and defect properties are calculated by employing the first-principles method based on the density functional theory. The obtained electronic structure shows that Li<sub>1.208</sub>Ni<sub>0.333</sub>Co<sub>0.042</sub>Mn<sub>0.417</sub>O<sub>2</sub> is a magnetic semiconductor with a direct band gap of 0.47 eV. The analysis of the electronic state suggests that the electronic state at the valence band maximum (VBM) is the hybridization of p<sub><i>x</i></sub>, p<sub><i>y</i></sub>, p<sub><i>z</i></sub> orbitals of oxygen and the d<sub><i>xy</i></sub>, d<sub><i>yz</i></sub>, d<sub><i>xz</i></sub> orbitals of Ni-atom. The electronic state at the conduction band minimum has similar characteristics to those at the VBM, however, part of Ni-<inline-formula><tex-math id="M5">\begin{document}${3{\rm{d}}}_{{x}^{2}-{y}^{2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M5.png"/></alternatives></inline-formula> and Mn-<inline-formula><tex-math id="M6">\begin{document}${3{\rm{d}}}_{{x}^{2}-{y}^{2}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M6.png"/></alternatives></inline-formula>, and Mn-<inline-formula><tex-math id="M7">\begin{document}${3{\rm{d}}}_{yz}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="20-20210398_M7.png"/></alternatives></inline-formula> also contribute to the electronic hybridizations. The charge density difference calculations indicate that the bonding between O and transition metal atoms are through the mixture of covalent bond with ionic bond. The vacancy formation of a single metal atom is also calculated. The results show that the volumes of the defect systems containing metal vacancies are all reduced in comparison with the volume of perfect lattice. The volume change is the largest for the formation of Mn-vacancy, while the volume is almost unchanged with Co atoms extracted. The vacancy formation energies of the metals are <i>E</i><sub>f</sub> (Mn) > <i>E</i><sub>f</sub> (Co) > <i>E</i><sub>f</sub> (Ni), and the vacancy formation energy of Mn is significantly higher than those of Ni and Co, indicating that the presence of Mn provides a major structural stability for the material. The calculated charge density differences also show that the formation of metal vacancies influences only the charge distribution of the oxygen atoms around the vacancy, showing the local character of the vacancy effect. Since the formation of metal vacancy breaks the bonding between the metal and the surrounding oxygen atoms, the O-2p states near the Fermi surface are significantly increased as shown in the calculated electronic density of states. Such a picture suggests that the electrons on oxygen atoms in vicinity of the metal vacancies become freer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liao发布了新的文献求助10
2秒前
落后忆丹发布了新的文献求助50
3秒前
土豪的黑夜完成签到,获得积分10
5秒前
Anri发布了新的文献求助10
5秒前
无私航空完成签到,获得积分10
6秒前
6秒前
8秒前
Owen应助健忘天问采纳,获得10
8秒前
科研小白完成签到 ,获得积分10
11秒前
17秒前
18秒前
CC完成签到,获得积分10
19秒前
20秒前
21秒前
22秒前
22秒前
22秒前
孙小雨发布了新的文献求助10
23秒前
24秒前
ll发布了新的文献求助10
24秒前
24秒前
25秒前
都是发布了新的文献求助10
25秒前
samo完成签到,获得积分10
27秒前
27秒前
WJ发布了新的文献求助10
28秒前
爹爹发布了新的文献求助10
28秒前
30秒前
Ian发布了新的文献求助10
31秒前
上官完成签到,获得积分10
32秒前
33秒前
FashionBoy应助leo采纳,获得10
35秒前
35秒前
彭于晏应助紫色奶萨采纳,获得10
35秒前
上官发布了新的文献求助10
36秒前
NexusExplorer应助落后忆丹采纳,获得50
38秒前
欢喜发卡发布了新的文献求助10
38秒前
42秒前
小马甲应助英勇的鱼采纳,获得10
43秒前
顾矜应助研究畜采纳,获得10
43秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146297
求助须知:如何正确求助?哪些是违规求助? 2797687
关于积分的说明 7825144
捐赠科研通 2454059
什么是DOI,文献DOI怎么找? 1305990
科研通“疑难数据库(出版商)”最低求助积分说明 627630
版权声明 601503