木犀草素
神经毒性
七氟醚
血红素加氧酶
药理学
神经保护
细胞凋亡
活性氧
化学
医学
血红素
生物化学
抗氧化剂
毒性
内科学
类黄酮
酶
作者
Lü Li,Ru Zhou,Haigang Lv,Lei Song,Xiangdong Xue,Li Wu
标识
DOI:10.1021/acschemneuro.1c00157
摘要
Luteolin is a flavone compound occurring in a variety of medicinal plants, which is reported to have neuroprotective properties. In this study, we aimed to explore the effects of luteolin in alleviating sevoflurane-induced neurotoxicity. GeneCards and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform were employed to screen luteolin, sevoflurane, and neurotoxicity-related genes. Subsequently, we isolated primary neurons from the hippocampus of 1-day-old C57BL/6J mice and tested for cytotoxicity after treatment of different concentrations of luteolin. Next, we measured the expression of apoptosis by flow cytometry and assessed inflammation-related factors, including heme oxygenase-1 expression detected by immunohistochemical staining and neuronal apoptosis. Finally, water maze, open field, and fear conditioning tests were conducted to observe the interaction between luteolin and sevoflurane in cognitive impairment of mice. Luteolin had the lowest cytotoxicity at concentrations of 30 or 60 μg/mL; we selected 30 μg/mL for drug administration experiments in vitro. Luteolin inhibited sevoflurane-induced neuronal apoptosis and inflammatory responses through the autophagic pathway and thus ameliorated sevoflurane-induced cognitive impairment in mice. Mechanistically, luteolin up-regulated heme oxygenase-1 expression, which activated the autophagy pathway in vitro. This was confirmed by subsequent histological experiments in mice and behavioral results showing rescue cognitive impairment. Our findings uncovered an inhibitory role of luteolin in sevoflurane-induced neuronal apoptosis and inflammatory response through activation of autophagy arising from up-regulation of heme oxygenase-1, thereby alleviating sevoflurane-induced cognitive impairment in mice.
科研通智能强力驱动
Strongly Powered by AbleSci AI