亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning predicts 3D printing performance of over 900 drug delivery systems

工作流程 计算机科学 管道(软件) 机器学习 人工智能 人工神经网络 挤压 3D打印 过程(计算) 药物输送 纳米技术 材料科学 工程类 机械工程 数据库 操作系统 冶金 程序设计语言
作者
Brais Muñiz Castro,Moe Elbadawi,Jun Jie Ong,Thomas D. Pollard,Zhe Song,Simon Gaisford,Gilberto Pérez,Abdul W. Basit,Pedro Cabalar,Álvaro Goyanes
出处
期刊:Journal of Controlled Release [Elsevier]
卷期号:337: 530-545 被引量:119
标识
DOI:10.1016/j.jconrel.2021.07.046
摘要

Three-dimensional printing (3DP) is a transformative technology that is advancing pharmaceutical research by producing personalized drug products. However, advances made via 3DP have been slow due to the lengthy trial-and-error approach in optimization. Artificial intelligence (AI) is a technology that could revolutionize pharmaceutical 3DP through analyzing large datasets. Herein, literature-mined data for developing AI machine learning (ML) models was used to predict key aspects of the 3DP formulation pipeline and in vitro dissolution properties. A total of 968 formulations were mined and assessed from 114 articles. The ML techniques explored were able to learn and provide accuracies as high as 93% for values in the filament hot melt extrusion process. In addition, ML algorithms were able to use data from the composition of the formulations with additional input features to predict the drug release of 3D printed medicines. The best prediction was obtained by an artificial neural network that was able to predict drug release times of a formulation with a mean error of ±24.29 min. In addition, the most important variables were revealed, which could be leveraged in formulation development. Thus, it was concluded that ML proved to be a suitable approach to modelling the 3D printing workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
24秒前
24秒前
andrele应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
迁小yan完成签到 ,获得积分0
34秒前
35秒前
37秒前
40秒前
43秒前
45秒前
47秒前
从容芮应助李剑鸿采纳,获得50
48秒前
栀璃鸳挽完成签到,获得积分10
51秒前
58秒前
深情安青应助爱听歌笑寒采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
一路微笑完成签到,获得积分10
1分钟前
从容芮应助李剑鸿采纳,获得50
1分钟前
CodeCraft应助momo采纳,获得10
1分钟前
2分钟前
从容芮应助李剑鸿采纳,获得50
2分钟前
2分钟前
momo发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3393035
求助须知:如何正确求助?哪些是违规求助? 3003414
关于积分的说明 8809186
捐赠科研通 2690204
什么是DOI,文献DOI怎么找? 1473526
科研通“疑难数据库(出版商)”最低求助积分说明 681603
邀请新用户注册赠送积分活动 674550