Monitoring of nitrogen accumulation in wheat plants based on hyperspectral data

高光谱成像 均方误差 环境科学 数学 植被(病理学) 作物 天蓬 遥感 回归分析 氮气 农学 统计 植物 生物 化学 地理 医学 病理 有机化学
作者
Xiao Song,Duanyang Xu,Chenchen Huang,Keke Zhang,Shaomin Huang,Doudou Guo,Shuiqing Zhang,Ke Yue,Tengfei Guo,Shasha Wang,Hecang Zang
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:23: 100598-100598 被引量:12
标识
DOI:10.1016/j.rsase.2021.100598
摘要

Abstract Crop nitrogen nutrition is an important indicator for evaluating crop growth. Rapid and non-destructive estimation of nitrogen accumulation in wheat leaves is of great significance for crop nitrogen fertilizer management. Based on field test data from multiple wheat varieties for different locations, years, nitrogen levels, and growth periods, the relationship between 11 canopy hyperspectral parameters and nitrogen accumulation in wheat plants was studied. According to the results of correlation and regression analysis, the flowering period of wheat was selected as the most suitable growth period for crop growth evaluation (the average R2 was 0.732, and the root mean square error (RMSE) was 0.354). A new vegetation index, NDchI*DDN (referred to as the nitrogen accumulation vegetation index, abbreviated as NAVI), was constructed based on the pairwise combination of traditional vegetation index products. This parameter had a high correlation with plant nitrogen accumulation (R2 = 0.856), and the root mean square error (RMSE) was 0.296. Tested by independent experimental data, the fitting degree of the plant nitrogen accumulation inversion model established with NAVI as the variable was R2 = 0.861, the relative error RE = 9.3%, RMSE = 0.398, and the prediction accuracy was significantly higher than other models. Therefore, construction of a NAVI-based plant nitrogen accumulation monitoring model gave ideal test results, which could reduce the limitations of experimental conditions and is expected to provide new important technical support for precise fertilization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
大个应助端庄的碧萱采纳,获得10
2秒前
3秒前
HLIMY完成签到,获得积分20
3秒前
听风雨发布了新的文献求助10
4秒前
标致雨寒发布了新的文献求助10
4秒前
无花果应助竹9采纳,获得50
4秒前
kido完成签到,获得积分10
4秒前
KYY发布了新的文献求助10
4秒前
DDDD发布了新的文献求助10
5秒前
FashionBoy应助静静采纳,获得10
5秒前
hoax发布了新的文献求助10
5秒前
6秒前
苗笑卉发布了新的文献求助10
6秒前
元始天尊发布了新的文献求助10
6秒前
123发布了新的文献求助10
8秒前
8秒前
9秒前
pellaeon完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
戴景轩完成签到,获得积分10
11秒前
斯文败类应助Levi李采纳,获得10
11秒前
浮游应助Leon采纳,获得10
11秒前
Sylwren完成签到,获得积分10
12秒前
12秒前
元始天尊完成签到,获得积分10
12秒前
12秒前
呼呼大睡完成签到,获得积分10
12秒前
SJJ应助hoax采纳,获得10
12秒前
曲幻梅发布了新的文献求助10
13秒前
香蕉觅云应助夏夏采纳,获得10
14秒前
123完成签到,获得积分10
14秒前
tiansun发布了新的文献求助30
14秒前
14秒前
zhuzhu完成签到,获得积分10
15秒前
852应助朱妙彤采纳,获得30
15秒前
独步出营完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569802
求助须知:如何正确求助?哪些是违规求助? 4654951
关于积分的说明 14710692
捐赠科研通 4596026
什么是DOI,文献DOI怎么找? 2522224
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1464030