Monitoring of nitrogen accumulation in wheat plants based on hyperspectral data

高光谱成像 均方误差 环境科学 数学 植被(病理学) 作物 天蓬 遥感 回归分析 氮气 农学 统计 植物 生物 化学 地理 医学 病理 有机化学
作者
Xiao Song,Duanyang Xu,Chenchen Huang,Keke Zhang,Shaomin Huang,Doudou Guo,Shuiqing Zhang,Ke Yue,Tengfei Guo,Shasha Wang,Hecang Zang
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:23: 100598-100598 被引量:12
标识
DOI:10.1016/j.rsase.2021.100598
摘要

Abstract Crop nitrogen nutrition is an important indicator for evaluating crop growth. Rapid and non-destructive estimation of nitrogen accumulation in wheat leaves is of great significance for crop nitrogen fertilizer management. Based on field test data from multiple wheat varieties for different locations, years, nitrogen levels, and growth periods, the relationship between 11 canopy hyperspectral parameters and nitrogen accumulation in wheat plants was studied. According to the results of correlation and regression analysis, the flowering period of wheat was selected as the most suitable growth period for crop growth evaluation (the average R2 was 0.732, and the root mean square error (RMSE) was 0.354). A new vegetation index, NDchI*DDN (referred to as the nitrogen accumulation vegetation index, abbreviated as NAVI), was constructed based on the pairwise combination of traditional vegetation index products. This parameter had a high correlation with plant nitrogen accumulation (R2 = 0.856), and the root mean square error (RMSE) was 0.296. Tested by independent experimental data, the fitting degree of the plant nitrogen accumulation inversion model established with NAVI as the variable was R2 = 0.861, the relative error RE = 9.3%, RMSE = 0.398, and the prediction accuracy was significantly higher than other models. Therefore, construction of a NAVI-based plant nitrogen accumulation monitoring model gave ideal test results, which could reduce the limitations of experimental conditions and is expected to provide new important technical support for precise fertilization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
xiangzq完成签到,获得积分10
1秒前
2秒前
比奇堡居民完成签到,获得积分10
2秒前
李爱国应助小米采纳,获得10
2秒前
涵泽完成签到,获得积分10
3秒前
4秒前
sunny完成签到,获得积分10
4秒前
4秒前
yy完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助30
5秒前
杨杨应助小红小绿采纳,获得10
6秒前
hh完成签到 ,获得积分10
8秒前
8秒前
8秒前
隐形曼青应助什么都不想采纳,获得10
9秒前
刘纾菡完成签到,获得积分10
9秒前
sunny发布了新的文献求助10
9秒前
9秒前
酷波er应助收手吧大哥采纳,获得10
10秒前
尽舜尧发布了新的文献求助10
10秒前
min关注了科研通微信公众号
10秒前
共享精神应助xu采纳,获得10
10秒前
faye发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
呆萌惜梦完成签到 ,获得积分10
11秒前
聪慧的冥完成签到,获得积分10
11秒前
12秒前
12秒前
星辰大海应助son采纳,获得10
12秒前
12秒前
Xdhcg发布了新的文献求助10
13秒前
切尔顿发布了新的文献求助50
14秒前
14秒前
在水一方应助罗大壮采纳,获得10
14秒前
14秒前
星辰大海应助lllllllxy采纳,获得10
15秒前
cslghe发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762020
求助须知:如何正确求助?哪些是违规求助? 5533545
关于积分的说明 15401764
捐赠科研通 4898295
什么是DOI,文献DOI怎么找? 2634801
邀请新用户注册赠送积分活动 1582925
关于科研通互助平台的介绍 1538165