Monitoring of nitrogen accumulation in wheat plants based on hyperspectral data

高光谱成像 均方误差 环境科学 数学 植被(病理学) 作物 天蓬 遥感 回归分析 氮气 农学 统计 植物 生物 化学 地理 医学 病理 有机化学
作者
Xiao Song,Duanyang Xu,Chenchen Huang,Keke Zhang,Shaomin Huang,Doudou Guo,Shuiqing Zhang,Ke Yue,Tengfei Guo,Shasha Wang,Hecang Zang
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:23: 100598-100598 被引量:12
标识
DOI:10.1016/j.rsase.2021.100598
摘要

Abstract Crop nitrogen nutrition is an important indicator for evaluating crop growth. Rapid and non-destructive estimation of nitrogen accumulation in wheat leaves is of great significance for crop nitrogen fertilizer management. Based on field test data from multiple wheat varieties for different locations, years, nitrogen levels, and growth periods, the relationship between 11 canopy hyperspectral parameters and nitrogen accumulation in wheat plants was studied. According to the results of correlation and regression analysis, the flowering period of wheat was selected as the most suitable growth period for crop growth evaluation (the average R2 was 0.732, and the root mean square error (RMSE) was 0.354). A new vegetation index, NDchI*DDN (referred to as the nitrogen accumulation vegetation index, abbreviated as NAVI), was constructed based on the pairwise combination of traditional vegetation index products. This parameter had a high correlation with plant nitrogen accumulation (R2 = 0.856), and the root mean square error (RMSE) was 0.296. Tested by independent experimental data, the fitting degree of the plant nitrogen accumulation inversion model established with NAVI as the variable was R2 = 0.861, the relative error RE = 9.3%, RMSE = 0.398, and the prediction accuracy was significantly higher than other models. Therefore, construction of a NAVI-based plant nitrogen accumulation monitoring model gave ideal test results, which could reduce the limitations of experimental conditions and is expected to provide new important technical support for precise fertilization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥福发布了新的文献求助10
1秒前
1秒前
victor完成签到,获得积分10
4秒前
尘扬发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
迷路雨寒应助111采纳,获得20
5秒前
健壮熊猫发布了新的文献求助10
6秒前
mm发布了新的文献求助10
6秒前
psycho完成签到,获得积分10
6秒前
可爱的函函应助悲伤牛蛙采纳,获得10
6秒前
Orange应助hui采纳,获得10
6秒前
sakiecon完成签到,获得积分10
7秒前
yu风应助科研通管家采纳,获得10
7秒前
xlx应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
xlx应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得30
7秒前
共享精神应助科研通管家采纳,获得30
7秒前
7秒前
xlx应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
xlx应助科研通管家采纳,获得10
7秒前
香蕉诗蕊应助科研通管家采纳,获得10
7秒前
xlx应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
xlx应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
yznfly给123的求助进行了留言
14秒前
shl完成签到,获得积分10
14秒前
14秒前
在水一方应助mm采纳,获得10
15秒前
fly完成签到,获得积分10
16秒前
kxy0311完成签到 ,获得积分10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604088
求助须知:如何正确求助?哪些是违规求助? 4688919
关于积分的说明 14857074
捐赠科研通 4696569
什么是DOI,文献DOI怎么找? 2541150
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851