Quasi-solid, bio-renewable supercapacitor with high specific capacitance and energy density based on rice electrolytes and rice straw-derived carbon dots as novel electrolyte additives

超级电容器 电解质 电容 材料科学 功率密度 活性炭 化学工程 碳纤维 水平扫描速率 比能量 纳米技术 电化学 电极 吸附 化学 复合材料 循环伏安法 复合数 有机化学 功率(物理) 物理 物理化学 量子力学 工程类
作者
Thanapat Jorn‐am,Janjira Praneerad,Rodsathon Attajak,Natee Sirisit,Jedsada Manyam,Peerasak Paoprasert
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier]
卷期号:628: 127239-127239 被引量:28
标识
DOI:10.1016/j.colsurfa.2021.127239
摘要

In this work, novel quasi-solid electrolytes and carbon dots as additives were developed for the bio-renewable, high energy-density supercapacitor. The activated carbon from rice straw was used to make an electrode while the carbon dots also from rice straw were combined with rice electrolytes. The supercapacitor using H3PO4/rice electrolyte yielded a specific capacitance, potential window, and energy density of 88 F g−1, 2 V, and 12 Wh kg−1, respectively, at a scan rate of 30 mV s−1. For comparison, electrolyte prepared from conventional H3PO4/poly(vinyl alcohol) yielded only 45 F g−1, 1.6 V, and 4 Wh kg−1. The addition of carbon dots to H3PO4/rice electrolytes further increased the specific capacitance, potential window, and energy density to 144 F g−1, 2.4 V, and 29 Wh kg−1, equivalent to 163%, 120%, and 241% enhancement, respectively. The maximum specific capacitance and energy density reached 491 F g−1 and 98 Wh kg−1, respectively, at a scan rate of 2 mV s−1. The carbon dots improved the supercapacitor performance by simultaneously enhancing the adsorption and diffusion of electroactive species and surface capacitance. Interestingly, the electrode was prepared without the addition of highly conductive carbon and still produced excellent supercapacitor performances. This work thus demonstrates a novel and simple strategy for using a bio-renewable resource for the fabrication of high-performance supercapacitors, which have great practical potential in the field of portable and wearable electronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
称心乐枫完成签到,获得积分10
1秒前
1秒前
22发布了新的文献求助10
1秒前
berry发布了新的文献求助10
1秒前
kingmin应助毛慢慢采纳,获得10
2秒前
完美世界应助顺利鱼采纳,获得10
3秒前
搜集达人应助招财不肥采纳,获得10
4秒前
sweetbearm应助李秋静采纳,获得10
4秒前
Michael_li完成签到,获得积分10
4秒前
whs完成签到,获得积分10
6秒前
科研通AI5应助xlj采纳,获得10
7秒前
再干一杯发布了新的文献求助10
7秒前
8秒前
满意的天完成签到 ,获得积分10
8秒前
luoshiwen完成签到,获得积分10
8秒前
落寞的觅柔完成签到,获得积分10
10秒前
11秒前
LUNWENREQUEST发布了新的文献求助10
11秒前
12秒前
13秒前
123cxj完成签到,获得积分10
16秒前
CO2发布了新的文献求助10
16秒前
summer发布了新的文献求助10
16秒前
17秒前
Xx.发布了新的文献求助10
17秒前
大大关注了科研通微信公众号
17秒前
稚祎完成签到 ,获得积分10
17秒前
17秒前
CodeCraft应助东东采纳,获得10
18秒前
19秒前
叽里咕噜完成签到 ,获得积分10
20秒前
田様应助zccc采纳,获得10
21秒前
隐形的雁完成签到,获得积分10
21秒前
追寻的秋玲完成签到,获得积分10
22秒前
李繁蕊发布了新的文献求助10
22秒前
23秒前
舒心的紫雪完成签到 ,获得积分10
24秒前
24秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808