Structure and performance of fully connected neural networks: Emerging complex network properties

初始化 中心性 计算机科学 人工神经网络 人工智能 深层神经网络 领域(数学分析) 复杂网络 航程(航空) 拓扑(电路) 机器学习 数学 数学分析 万维网 组合数学 复合材料 材料科学 程序设计语言
作者
Leonardo Scabini,Odemir Martinez Bruno
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:615: 128585-128585 被引量:16
标识
DOI:10.1016/j.physa.2023.128585
摘要

Understanding the behavior of Artificial Neural Networks is one of the main topics in the field recently, as black-box approaches have become usual since the widespread of deep learning. Such high-dimensional models may manifest instabilities and weird properties that resemble complex systems. Therefore, we propose Complex Network (CN) techniques to analyze the structure and performance of fully connected neural networks. For that, we build a dataset with 4 thousand models (varying the initialization seed) and their respective CN properties. This is the first work to explore the CN properties of an ample number of fully connected networks accounting for the variance caused by random weight initialization. The networks are trained in a supervised classification setup considering four vision benchmarks and then approached as a weighted and undirected graph of neurons and synapses (learned weights). Results show that neuronal centrality is highly correlated to network classification performance. We also propose the concept of Bag-Of-Neurons (BoN), a CN-based approach for finding topological signatures linking similar neurons. Results suggest that six neuronal types emerge in such networks, independently of the target domain, and are distributed differently according to classification accuracy. We also tackle specific CN properties related to performance, such as higher subgraph centrality on lower-performing models. Our findings suggest that CN properties play a critical role in the performance of fully connected neural networks, with topological patterns emerging independently on a wide range of models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
椰水冰凉发布了新的文献求助10
1秒前
yue完成签到,获得积分10
2秒前
2秒前
3秒前
三井M完成签到,获得积分10
3秒前
3秒前
3秒前
顾志成发布了新的文献求助10
5秒前
NexusExplorer应助666采纳,获得30
5秒前
6秒前
weihua93发布了新的文献求助10
6秒前
6秒前
7秒前
852应助Wendy采纳,获得10
8秒前
CipherSage应助感动归尘采纳,获得10
8秒前
orixero应助李晴采纳,获得10
9秒前
Lyj123发布了新的文献求助10
9秒前
彤彤完成签到,获得积分10
9秒前
顾志成完成签到,获得积分10
10秒前
11秒前
没有答案发布了新的文献求助10
13秒前
李青梅完成签到,获得积分10
14秒前
秦之秦完成签到,获得积分10
14秒前
YUAN完成签到,获得积分10
14秒前
Damunv发布了新的文献求助10
15秒前
Ava应助扣我头上采纳,获得10
15秒前
柒柒完成签到,获得积分10
16秒前
李晴完成签到,获得积分10
21秒前
饱满荔枝完成签到,获得积分10
21秒前
赘婿应助cheyy采纳,获得10
23秒前
24秒前
24秒前
24秒前
赘婿应助yanny采纳,获得10
26秒前
26秒前
27秒前
深情安青应助勤恳的白猫采纳,获得10
27秒前
李晴发布了新的文献求助10
27秒前
steve发布了新的文献求助10
29秒前
Sunny完成签到 ,获得积分10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458565
求助须知:如何正确求助?哪些是违规求助? 3053409
关于积分的说明 9036451
捐赠科研通 2742665
什么是DOI,文献DOI怎么找? 1504455
科研通“疑难数据库(出版商)”最低求助积分说明 695312
邀请新用户注册赠送积分活动 694484