Fault-tolerant adaptive tracking control of Euler-Lagrange systems – An echo state network approach driven by reinforcement learning

强化学习 计算机科学 控制理论(社会学) 稳健性(进化) 人工神经网络 回声状态网络 非线性系统 控制工程 人工智能 循环神经网络 控制(管理) 工程类 物理 基因 量子力学 化学 生物化学
作者
Qing Chen,Yaochu Jin,Yongduan Song
出处
期刊:Neurocomputing [Elsevier]
卷期号:484: 109-116 被引量:18
标识
DOI:10.1016/j.neucom.2021.10.083
摘要

Reinforcement learning (RL) has enjoyed considerable success in application to nonlinear systems. However, very few RL-based works that explicitly address the control problem of MIMO nonlinear systems with subject to actuator failures. In this work, we develop a fault-tolerant adaptive tracking control method fused with an echo state network (ESN) driven by reinforcement learning for Euler-Lagrange systems subject to actuation faults. The proposed control includes an associative search network (ASN), a control gain network (CGN), and an adaptive critic network (ACN), with ASN to estimate the unknown items of the control system, CGN to deal with the time-varying and unknown control gains matrix, and ACN to generate the reinforcement signal, all together ensuring stable tracking and accommodate modeling uncertainties and actuation failures. Different from traditional reinforcement learning controllers that utilizes radial basis function neural networks (RBFNN) or fuzzy systems, the proposed one adopts an echo state network, a paradigm of recurrent neural networks, to implement the ASN, ACN and CGN, resulting in enhanced learning capabilities and stronger robustness against external uncertainties and disturbances, thus better control performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葛大爷发布了新的文献求助10
1秒前
优雅的平安完成签到 ,获得积分10
4秒前
合适醉蝶完成签到 ,获得积分10
5秒前
噗愣噗愣地刚发芽完成签到 ,获得积分10
6秒前
科研通AI6应助葛大爷采纳,获得10
12秒前
李某某完成签到 ,获得积分10
13秒前
nicholas完成签到,获得积分10
19秒前
研友Bn完成签到 ,获得积分10
23秒前
dlzheng完成签到 ,获得积分10
23秒前
洸彦完成签到 ,获得积分10
25秒前
Karry完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
肥亮完成签到 ,获得积分20
28秒前
雷小牛完成签到 ,获得积分10
32秒前
狂跳的脉搏完成签到,获得积分10
32秒前
123567完成签到 ,获得积分10
35秒前
仗剑走天涯完成签到 ,获得积分10
37秒前
贪玩的秋柔应助予秋采纳,获得10
38秒前
贪玩的秋柔应助予秋采纳,获得10
38秒前
chichenglin完成签到 ,获得积分0
41秒前
mark33442完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助10
46秒前
风趣朝雪完成签到,获得积分10
48秒前
英勇的红酒完成签到 ,获得积分10
50秒前
gxzsdf完成签到 ,获得积分10
51秒前
快乐谷蓝完成签到,获得积分10
52秒前
wBw完成签到,获得积分10
53秒前
iorpi完成签到,获得积分10
54秒前
kk完成签到,获得积分10
57秒前
caulif完成签到 ,获得积分10
57秒前
瞬间de回眸完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
1分钟前
dadaup完成签到 ,获得积分10
1分钟前
吉吉完成签到,获得积分10
1分钟前
zhuosht完成签到 ,获得积分10
1分钟前
Edou完成签到 ,获得积分10
1分钟前
凡凡完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
kingfly2010完成签到,获得积分10
1分钟前
善善完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584819
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771614
捐赠科研通 4615409
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467575