小RNA
计算生物学
图形
非编码RNA
计算机科学
生物网络
疾病
核糖核酸
代表(政治)
生物
生物信息学
理论计算机科学
基因
遗传学
医学
政治
病理
法学
政治学
作者
Chengxin He,Lei Duan,Huiru Zheng,Jesse Li‐Ling,Linlin Song,Longhai Li
出处
期刊:Methods
[Elsevier]
日期:2021-11-07
卷期号:198: 45-55
被引量:13
标识
DOI:10.1016/j.ymeth.2021.10.006
摘要
Non-coding RNAs are gaining prominence in biology and medicine, as they play major roles in cellular homeostasis among which the circRNA-miRNA-mRNA axes are involved in a series of disease-related pathways, such as apoptosis, cell invasion and metastasis. Recently, many computational methods have been developed for the prediction of the relationship between ncRNAs and diseases, which can alleviate the time-consuming and labor-intensive exploration involved with biological experiments. However, these methods handle ncRNAs separately, ignoring the impact of the interactions among ncRNAs on the diseases. In this paper we present a novel approach to discovering disease-related circRNA-miRNA-mRNA axes from the disease-RNA information network. Our method, using graph convolutional network, learns the characteristic representation of each biological entity by propagating and aggregating local neighbor information based on the global structure of the network. The approach is evaluated using the real-world datasets and the results show that it outperforms other state-of-the-art baselines on most of the metrics.
科研通智能强力驱动
Strongly Powered by AbleSci AI