DeepPTV: Particle Tracking Velocimetry for Complex Flow Motion via Deep Neural Networks

粒子跟踪测速 粒子图像测速 跟踪(教育) 流量(数学) 测速 计算机科学 人工智能 粒子(生态学) 人工神经网络 流动可视化 算法 计算机视觉 物理 光学 机械 地质学 海洋学 湍流 教育学 心理学
作者
Jiaming Liang,Shengze Cai,Chao Xu,Tehuan Chen,Jian Chu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-16 被引量:12
标识
DOI:10.1109/tim.2021.3120127
摘要

Particle tracking velocimetry (PTV) is a powerful technique for global and nonintrusive flow field measurement, which shows a great potential to improve the spatial resolution compared to other flow visualization technologies (e.g., correlation-based particle image velocimetry). However, performing PTV under flow conditions with high flow speed and high particle density is still a challenge. In addition, more and more research sacrifices the computational efficiency for high accuracy using complex iterative algorithms. To address these problems, we propose a deep particle tracking network, called deep neural network for PTV (DeepPTV), for learning the complex fluid flow motion from two consecutive particle sets efficiently and accurately. First, the local spatial geometry information from neighboring particles is aggregated for each particle along with robust features (i.e., the relative distance to the neighbors), which help to preserve the properties of fluids. Second, to cope with the problem caused by nonuniform seeding density of particles, the multiscale features are combined together in each hierarchy of the neural network. Furthermore, motivated by the convection flow phenomena, the proposed DeepPTV model adopts a novel network architecture named convection architecture to estimate the flow field in a hierarchical framework, namely, from large-scale motion to small-scale motion. Experimental evaluations on both artificial and laboratory particle images demonstrate that the proposed framework can provide satisfactory accuracy that rivals the state-of-the-art methods. Moreover, the presented high efficiency makes it a promising algorithm for real-time estimation and real-time flow control problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助Arueliano采纳,获得10
刚刚
研友_VZG7GZ应助turbohuan采纳,获得10
1秒前
2秒前
科研达人发布了新的文献求助10
2秒前
4秒前
4秒前
风中书易完成签到,获得积分10
5秒前
务实青筠发布了新的文献求助10
5秒前
麻辣小龙虾完成签到,获得积分10
5秒前
6秒前
Alvin发布了新的文献求助10
6秒前
Fu完成签到,获得积分20
7秒前
恋雅颖月应助科多兽骑士采纳,获得10
7秒前
8秒前
9秒前
活泼万言完成签到,获得积分10
9秒前
彭于晏应助无辜小鸭子采纳,获得30
9秒前
lly2021发布了新的文献求助10
10秒前
聪慧的鹤轩完成签到,获得积分10
11秒前
情怀应助taimeili采纳,获得10
12秒前
DingShicong完成签到 ,获得积分10
12秒前
14秒前
14秒前
胖丹发布了新的文献求助10
14秒前
zz完成签到,获得积分10
14秒前
zwjy完成签到,获得积分10
16秒前
所所应助聪慧的鹤轩采纳,获得10
17秒前
Cher1she发布了新的文献求助10
19秒前
我是老大应助专一的易巧采纳,获得10
19秒前
20秒前
20秒前
22秒前
范白白完成签到 ,获得积分10
23秒前
23秒前
lly2021完成签到,获得积分10
23秒前
胖丹完成签到,获得积分10
26秒前
26秒前
天天快乐应助轩辕冰夏采纳,获得10
27秒前
28秒前
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533831
关于积分的说明 11263946
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882968
科研通“疑难数据库(出版商)”最低求助积分说明 809629