亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepPTV: Particle Tracking Velocimetry for Complex Flow Motion via Deep Neural Networks

粒子跟踪测速 粒子图像测速 跟踪(教育) 流量(数学) 测速 计算机科学 人工智能 粒子(生态学) 人工神经网络 流动可视化 算法 计算机视觉 物理 光学 机械 地质学 心理学 教育学 海洋学 湍流
作者
Jiaming Liang,Shengze Cai,Chao Xu,Tehuan Chen,Jian Chu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-16 被引量:12
标识
DOI:10.1109/tim.2021.3120127
摘要

Particle tracking velocimetry (PTV) is a powerful technique for global and nonintrusive flow field measurement, which shows a great potential to improve the spatial resolution compared to other flow visualization technologies (e.g., correlation-based particle image velocimetry). However, performing PTV under flow conditions with high flow speed and high particle density is still a challenge. In addition, more and more research sacrifices the computational efficiency for high accuracy using complex iterative algorithms. To address these problems, we propose a deep particle tracking network, called deep neural network for PTV (DeepPTV), for learning the complex fluid flow motion from two consecutive particle sets efficiently and accurately. First, the local spatial geometry information from neighboring particles is aggregated for each particle along with robust features (i.e., the relative distance to the neighbors), which help to preserve the properties of fluids. Second, to cope with the problem caused by nonuniform seeding density of particles, the multiscale features are combined together in each hierarchy of the neural network. Furthermore, motivated by the convection flow phenomena, the proposed DeepPTV model adopts a novel network architecture named convection architecture to estimate the flow field in a hierarchical framework, namely, from large-scale motion to small-scale motion. Experimental evaluations on both artificial and laboratory particle images demonstrate that the proposed framework can provide satisfactory accuracy that rivals the state-of-the-art methods. Moreover, the presented high efficiency makes it a promising algorithm for real-time estimation and real-time flow control problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
明理珩发布了新的文献求助10
5秒前
8秒前
12秒前
明理珩发布了新的文献求助10
13秒前
17秒前
明理珩发布了新的文献求助10
20秒前
彭于晏应助明理珩采纳,获得10
25秒前
步念发布了新的文献求助10
33秒前
36秒前
37秒前
38秒前
彩色不评完成签到,获得积分10
41秒前
明理珩发布了新的文献求助10
43秒前
彩色不评发布了新的文献求助10
44秒前
46秒前
46秒前
上官若男应助明理珩采纳,获得80
48秒前
传奇3应助明理珩采纳,获得30
48秒前
55秒前
1分钟前
超帅的开山完成签到 ,获得积分10
1分钟前
1分钟前
明理珩发布了新的文献求助30
1分钟前
1分钟前
小妮子完成签到,获得积分10
1分钟前
明理珩发布了新的文献求助80
1分钟前
fishss完成签到 ,获得积分0
1分钟前
Able完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
spinon发布了新的文献求助10
2分钟前
汤万天完成签到,获得积分10
2分钟前
SciGPT应助明理珩采纳,获得10
2分钟前
2分钟前
2分钟前
cy0824完成签到 ,获得积分10
2分钟前
明理珩发布了新的文献求助10
2分钟前
FashionBoy应助明理珩采纳,获得10
3分钟前
spinon发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603317
求助须知:如何正确求助?哪些是违规求助? 4688370
关于积分的说明 14853492
捐赠科研通 4690132
什么是DOI,文献DOI怎么找? 2540639
邀请新用户注册赠送积分活动 1507001
关于科研通互助平台的介绍 1471609