DeepPTV: Particle Tracking Velocimetry for Complex Flow Motion via Deep Neural Networks

粒子跟踪测速 粒子图像测速 跟踪(教育) 流量(数学) 测速 计算机科学 人工智能 粒子(生态学) 人工神经网络 流动可视化 算法 计算机视觉 物理 光学 机械 地质学 海洋学 湍流 教育学 心理学
作者
Jiaming Liang,Shengze Cai,Chao Xu,Tehuan Chen,Jian Chu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-16 被引量:12
标识
DOI:10.1109/tim.2021.3120127
摘要

Particle tracking velocimetry (PTV) is a powerful technique for global and nonintrusive flow field measurement, which shows a great potential to improve the spatial resolution compared to other flow visualization technologies (e.g., correlation-based particle image velocimetry). However, performing PTV under flow conditions with high flow speed and high particle density is still a challenge. In addition, more and more research sacrifices the computational efficiency for high accuracy using complex iterative algorithms. To address these problems, we propose a deep particle tracking network, called deep neural network for PTV (DeepPTV), for learning the complex fluid flow motion from two consecutive particle sets efficiently and accurately. First, the local spatial geometry information from neighboring particles is aggregated for each particle along with robust features (i.e., the relative distance to the neighbors), which help to preserve the properties of fluids. Second, to cope with the problem caused by nonuniform seeding density of particles, the multiscale features are combined together in each hierarchy of the neural network. Furthermore, motivated by the convection flow phenomena, the proposed DeepPTV model adopts a novel network architecture named convection architecture to estimate the flow field in a hierarchical framework, namely, from large-scale motion to small-scale motion. Experimental evaluations on both artificial and laboratory particle images demonstrate that the proposed framework can provide satisfactory accuracy that rivals the state-of-the-art methods. Moreover, the presented high efficiency makes it a promising algorithm for real-time estimation and real-time flow control problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
Yziii应助科研通管家采纳,获得20
刚刚
迅速远望应助科研通管家采纳,获得10
刚刚
刚刚
竹筏过海应助科研通管家采纳,获得30
1秒前
华国锋应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
盒子应助科研通管家采纳,获得20
1秒前
传奇3应助科研通管家采纳,获得30
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
盒子年糕应助科研通管家采纳,获得10
1秒前
WM应助科研通管家采纳,获得20
1秒前
1秒前
情怀应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
科研通AI2S应助yyyy采纳,获得10
2秒前
2秒前
王红玉完成签到,获得积分10
2秒前
研友_LJeoa8发布了新的文献求助10
3秒前
lunar发布了新的文献求助10
3秒前
高大凌寒应助自由涔采纳,获得10
3秒前
3秒前
人生苦短发布了新的文献求助10
4秒前
zppppp发布了新的文献求助10
4秒前
4秒前
香蕉觅云应助李李李采纳,获得10
5秒前
6秒前
7秒前
渣渣XM发布了新的文献求助10
7秒前
7秒前
8秒前
可靠代丝发布了新的文献求助10
8秒前
净意完成签到,获得积分10
8秒前
9秒前
戈壁小黄花完成签到,获得积分10
9秒前
ExtroGod发布了新的文献求助10
9秒前
沐子发布了新的文献求助10
11秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159555
求助须知:如何正确求助?哪些是违规求助? 2810543
关于积分的说明 7888660
捐赠科研通 2469574
什么是DOI,文献DOI怎么找? 1314953
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012