DeepPTV: Particle Tracking Velocimetry for Complex Flow Motion via Deep Neural Networks

粒子跟踪测速 粒子图像测速 跟踪(教育) 流量(数学) 测速 计算机科学 人工智能 粒子(生态学) 人工神经网络 流动可视化 算法 计算机视觉 物理 光学 机械 地质学 心理学 教育学 海洋学 湍流
作者
Jiaming Liang,Shengze Cai,Chao Xu,Tehuan Chen,Jian Chu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-16 被引量:12
标识
DOI:10.1109/tim.2021.3120127
摘要

Particle tracking velocimetry (PTV) is a powerful technique for global and nonintrusive flow field measurement, which shows a great potential to improve the spatial resolution compared to other flow visualization technologies (e.g., correlation-based particle image velocimetry). However, performing PTV under flow conditions with high flow speed and high particle density is still a challenge. In addition, more and more research sacrifices the computational efficiency for high accuracy using complex iterative algorithms. To address these problems, we propose a deep particle tracking network, called deep neural network for PTV (DeepPTV), for learning the complex fluid flow motion from two consecutive particle sets efficiently and accurately. First, the local spatial geometry information from neighboring particles is aggregated for each particle along with robust features (i.e., the relative distance to the neighbors), which help to preserve the properties of fluids. Second, to cope with the problem caused by nonuniform seeding density of particles, the multiscale features are combined together in each hierarchy of the neural network. Furthermore, motivated by the convection flow phenomena, the proposed DeepPTV model adopts a novel network architecture named convection architecture to estimate the flow field in a hierarchical framework, namely, from large-scale motion to small-scale motion. Experimental evaluations on both artificial and laboratory particle images demonstrate that the proposed framework can provide satisfactory accuracy that rivals the state-of-the-art methods. Moreover, the presented high efficiency makes it a promising algorithm for real-time estimation and real-time flow control problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助橙子采纳,获得10
刚刚
ZhouQixing发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
syr完成签到,获得积分10
2秒前
abcd_1067发布了新的文献求助10
2秒前
搜集达人应助知非采纳,获得10
4秒前
jackten发布了新的文献求助10
4秒前
4秒前
123zyx发布了新的文献求助10
4秒前
5秒前
Vizz发布了新的文献求助10
6秒前
6秒前
7秒前
wanci应助亚铁氰化钾采纳,获得10
7秒前
yongjiang完成签到,获得积分10
8秒前
高高亦竹发布了新的文献求助30
8秒前
KyrieIrving关注了科研通微信公众号
8秒前
NexusExplorer应助甜甜斓采纳,获得10
9秒前
搜集达人应助che采纳,获得10
10秒前
科研通AI5应助慢慢采纳,获得10
10秒前
10秒前
balabala完成签到,获得积分20
11秒前
雷雷发布了新的文献求助10
11秒前
11秒前
烟花应助puppet采纳,获得10
12秒前
稗子发布了新的文献求助10
13秒前
小蘑菇应助妮子采纳,获得10
14秒前
15秒前
顾矜应助Yun yun采纳,获得10
15秒前
张颖发布了新的文献求助10
16秒前
16秒前
77完成签到,获得积分10
17秒前
情怀应助舒心芷荷采纳,获得10
17秒前
Gonna留下了新的社区评论
17秒前
athenalin1988发布了新的文献求助10
17秒前
haoqisheng发布了新的文献求助10
18秒前
冰美式不加糖完成签到,获得积分10
18秒前
ll发布了新的文献求助10
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228