过剩4
吡格列酮
安普克
内分泌学
内科学
过氧化物酶体增殖物激活受体
化学
染色体易位
葡萄糖转运蛋白
葡萄糖摄取
兴奋剂
脂肪生成
受体
细胞生物学
生物
蛋白激酶A
胰岛素
生物化学
脂肪组织
磷酸化
糖尿病
2型糖尿病
基因
医学
作者
Guru Bhavimani,Akhilesh K. Tamrakar,Subhankar P. Mandal,B. R. Prashantha Kumar,Aditya Sharma,S. N. Manjula
出处
期刊:Pharmacology
[S. Karger AG]
日期:2021-11-04
卷期号:107 (1-2): 90-101
被引量:3
摘要
Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are highly effective in treating insulin resistance. However, associated side effects such as weight gain due to increase in adipogenesis and lipogenesis hinder their clinical use. The aim of the study was to design and synthesize novel partial PPARγ agonists with weaker lipogenic effect in adipocytes and enhanced glucose transporter 4 (GLUT4) translocation stimulatory effect in skeletal muscle cells.Novel partial PPARγ agonists (GS1, GS2, and GS3) were designed and screened to predict their binding interactions with PPARγ by molecular docking. The stability of the docked ligand-PPARγ complex was studied by molecular dynamics (MD) simulation. The cytotoxicity of synthesized compounds was tested in 3T3-L1 adipocytes and L6 myoblasts by MTT assay. The lipogenic effect was investigated in 3T3-L1 adipocytes using oil red O staining and GLUT4 translocation stimulatory effect in L6-GLUT4myc myotubes by an antibody-coupled colorimetric assay.The molecular docking showed the binding interactions between designed agonists and PPARγ. MD simulation demonstrated good stability between the GS2-PPARγ complex. GS2 and GS3 did not show any significant effect on cell viability up to 80 or 100 μM concentration. Pioglitazone treatment significantly increased intracellular lipid accumulation in adipocytes compared to control. However, this effect was significantly less in GS2- and GS3-treated conditions compared to pioglitazone at 10 μM concentration, indicating weaker lipogenic effect. Furthermore, GS2 significantly stimulated GLUT4 translocation to the plasma membrane in a dose-dependent manner via the AMPK-dependent signaling pathway in skeletal muscle cells.GS2 may be a promising therapeutic agent for the treatment of insulin resistance and type 2 diabetes mellitus without adiposity.
科研通智能强力驱动
Strongly Powered by AbleSci AI