Association between hemoglobin glycation index and subclinical myocardial injury in the general population free from cardiovascular disease

糖化血红素 内科学 医学 亚临床感染 糖基化 糖尿病 混淆 人口 逻辑回归 心脏病学 2型糖尿病 内分泌学 环境卫生
作者
Zhenwei Wang,Yihai Liu,Jing Xie,Naifeng Liu
出处
期刊:Nutrition Metabolism and Cardiovascular Diseases [Elsevier]
卷期号:32 (2): 469-478 被引量:13
标识
DOI:10.1016/j.numecd.2021.10.018
摘要

The relationship between hemoglobin glycation index (HGI) and the diagnosis and prognosis of cardiovascular disease (CVD) has been verified by previous studies. However, it remains unknown whether HGI has a predictive effect on subclinical myocardial injury (SC-MI). The purpose of the present study was to explore the relationship between HGI and SC-MI in the general population free from CVD.The present study included 6009 participants free of CVD from the third National Health and Nutrition Examination Survey. Binary Logistic regression analysis was used to tested the association between HGI and SC-MI. As results, the HGI was significantly higher in participants with SC-MI compared with those without, and the HGI was positively correlated with SC-MI and other metabolic disorder parameters. Each 1-unit increase of HGI and glycated hemoglobin A1c (HbA1c) was independently associated with higher risk of SC-MI (P < 0.05), while fasting plasma glucose (FPG) was no longer a predictive indicator of SC-MI with the increase of confounding factors [OR (95% CI): 1.001 (0.999-1.003), P = 0.305]. And in the subgroup analysis, HGI, only in participants without diabetes, was independently associated with higher risk of SC-MI, while HbA1c and FPG had no independent predictive role in both diabetic and non-diabetic participants.HGI was a significant predictor of SC-MI in the general population free from CVD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助小黑采纳,获得10
刚刚
1秒前
金鱼发布了新的文献求助10
1秒前
2秒前
猪猪侠应助正在加载中采纳,获得10
3秒前
3秒前
康明雪发布了新的文献求助10
3秒前
高高的起眸完成签到,获得积分10
3秒前
眼睛大的寄真完成签到,获得积分10
4秒前
宙船完成签到,获得积分20
4秒前
keyanniniz发布了新的文献求助10
5秒前
warithy完成签到,获得积分10
5秒前
lcpppppp发布了新的文献求助10
5秒前
今后应助白日做梦采纳,获得10
6秒前
6秒前
chd发布了新的文献求助30
7秒前
xinxin0902发布了新的文献求助10
7秒前
7秒前
AAAsun完成签到,获得积分10
7秒前
小蘑菇应助土豆丝上将采纳,获得30
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
轩儿轩完成签到 ,获得积分10
10秒前
友好的芷雪完成签到,获得积分10
10秒前
LL发布了新的文献求助10
10秒前
11秒前
YH完成签到,获得积分10
12秒前
SOBER发布了新的文献求助10
12秒前
13秒前
傲娇绿蕊发布了新的文献求助10
13秒前
顾矜应助Reborn采纳,获得10
13秒前
上官若男应助lcpppppp采纳,获得10
16秒前
核桃发布了新的文献求助10
16秒前
221发布了新的文献求助10
16秒前
失眠的冬易完成签到 ,获得积分10
16秒前
drew完成签到 ,获得积分10
17秒前
dreamode完成签到,获得积分10
17秒前
优美的梦玉完成签到,获得积分20
18秒前
星星完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666928
求助须知:如何正确求助?哪些是违规求助? 4883518
关于积分的说明 15118330
捐赠科研通 4825864
什么是DOI,文献DOI怎么找? 2583597
邀请新用户注册赠送积分活动 1537760
关于科研通互助平台的介绍 1495956