Exploring Image Enhancement for Salient Object Detection in Low Light Images

人工智能 计算机科学 计算机视觉 亮度 对象(语法) 水准点(测量) 目标检测 像素 基本事实 突出 块(置换群论) 对比度(视觉) 模式识别(心理学) 图像(数学) 数学 地理 光学 物理 几何学 大地测量学
作者
Xin Xu,Shiqin Wang,Zheng Wang,Xiaolong Zhang,Ruimin Hu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:17 (1s): 1-19 被引量:38
标识
DOI:10.1145/3414839
摘要

Low light images captured in a non-uniform illumination environment usually are degraded with the scene depth and the corresponding environment lights. This degradation results in severe object information loss in the degraded image modality, which makes the salient object detection more challenging due to low contrast property and artificial light influence. However, existing salient object detection models are developed based on the assumption that the images are captured under a sufficient brightness environment, which is impractical in real-world scenarios. In this work, we propose an image enhancement approach to facilitate the salient object detection in low light images. The proposed model directly embeds the physical lighting model into the deep neural network to describe the degradation of low light images, in which the environment light is treated as a point-wise variate and changes with local content. Moreover, a Non-Local-Block Layer is utilized to capture the difference of local content of an object against its local neighborhood favoring regions. To quantitative evaluation, we construct a low light Images dataset with pixel-level human-labeled ground-truth annotations and report promising results on four public datasets and our benchmark dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助小袁采纳,获得10
1秒前
哟哟哟完成签到,获得积分10
1秒前
光亮友安发布了新的文献求助10
2秒前
Jasper应助旗树树采纳,获得10
3秒前
3秒前
彦卿完成签到 ,获得积分10
4秒前
传奇3应助歪西歪的采纳,获得10
5秒前
Hello应助深情的采波采纳,获得10
6秒前
光速蜗牛完成签到,获得积分10
6秒前
乔er一完成签到,获得积分10
7秒前
沧笙踏歌应助麻辣牛肉采纳,获得10
7秒前
7秒前
7秒前
Akim应助wwl采纳,获得10
8秒前
8秒前
8秒前
9秒前
梦若浮生发布了新的文献求助10
9秒前
斯文败类应助负责莆采纳,获得10
9秒前
Owen应助小袁采纳,获得10
10秒前
10秒前
10秒前
乔er一发布了新的文献求助10
10秒前
pluto应助感动的念双采纳,获得10
11秒前
11秒前
11秒前
bkagyin应助淡淡夕阳采纳,获得10
11秒前
zjkzh发布了新的文献求助10
12秒前
sota发布了新的文献求助10
12秒前
12秒前
上官若男应助小吃惑采纳,获得10
12秒前
13秒前
13秒前
13秒前
亭子发布了新的文献求助10
13秒前
布吉岛发布了新的文献求助10
13秒前
高兴的斑马完成签到 ,获得积分10
13秒前
13秒前
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958693
求助须知:如何正确求助?哪些是违规求助? 3504939
关于积分的说明 11121216
捐赠科研通 3236311
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871307
科研通“疑难数据库(出版商)”最低求助积分说明 802691