A CNN Model: Earlier Diagnosis and Classification of Alzheimer Disease using MRI

人工智能 卷积神经网络 深度学习 计算机科学 痴呆 机器学习 疾病 磁共振成像 神经影像学 上下文图像分类 人工神经网络 模式识别(心理学) 图像(数学) 医学 病理 放射科 精神科
作者
Ahmad Waleed Salehi,Preety Baglat,Bhanu Sharma,Gaurav Gupta,Ankita Upadhya
出处
期刊:2020 International Conference on Smart Electronics and Communication (ICOSEC) 被引量:43
标识
DOI:10.1109/icosec49089.2020.9215402
摘要

Alzheimer 's Disease (AD) is the most common form of dementia that can lead to a neurological brain disorder that causes progressive memory loss as a result of damaging the brain cells and the ability to perform daily activities. Using MRI (Magnetic Resonance Imaging) scan brain images, we can get the help of Artificial intelligence (AI) technology for detection and prediction of this disease and classify the AD patients whether they have or may not have this deadly disease in future. The main purpose of doing all this is to make the best prediction and detection tools for the help of radiologists, doctors, caregivers to save time, cost, and help the patient suffering from this disease. In recent years, the Deep Learning (DL) algorithms are very useful for the diagnosis of AD as DL algorithms work well with large datasets. In this paper, we have implemented Convolutional Neural Network (CNN) for the earlier diagnosis and classification of AD using MRI images, the ADNI 3 class of images with the total number of 1512 mild, 2633 normal and 2480 AD were used. A significant accuracy of 99% achieved in which the model performed well as we compared with many other related works. Furthermore, we also compared the result with our previous work on which ma-chine learning algorithms were applied using OASIS dataset and it showed that when dealing with large amount of data like medical data the deep learning approaches can be a better option over the traditional machine learning techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Orange应助林夕采纳,获得10
1秒前
Aray完成签到,获得积分10
2秒前
大吴克发布了新的文献求助10
2秒前
zhuxl应助廖尔阳采纳,获得10
4秒前
婷大仙儿完成签到,获得积分10
4秒前
JamesPei应助雨的前世采纳,获得10
4秒前
boboking完成签到,获得积分10
5秒前
Battery-Li发布了新的文献求助10
5秒前
隐形如凡发布了新的文献求助10
6秒前
Lllllllll发布了新的文献求助10
7秒前
8秒前
8秒前
orixero应助summuryi采纳,获得10
8秒前
9秒前
9秒前
山石完成签到,获得积分20
11秒前
11秒前
12秒前
社会主义接班人完成签到 ,获得积分10
13秒前
fiammazeng发布了新的文献求助30
13秒前
zhangyuheng发布了新的文献求助10
14秒前
14秒前
mawanyu完成签到 ,获得积分10
15秒前
16秒前
明理依云完成签到,获得积分10
16秒前
17秒前
Lllllllll完成签到,获得积分10
17秒前
18秒前
18秒前
是木易呀应助yanning采纳,获得10
18秒前
积极听蓉完成签到,获得积分10
18秒前
eki发布了新的文献求助30
18秒前
ding应助健壮的囧采纳,获得10
18秒前
19秒前
summuryi发布了新的文献求助10
20秒前
Celine发布了新的文献求助10
20秒前
研友_VZG7GZ应助低空飞行采纳,获得10
20秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297232
求助须知:如何正确求助?哪些是违规求助? 2932727
关于积分的说明 8458768
捐赠科研通 2605447
什么是DOI,文献DOI怎么找? 1422342
科研通“疑难数据库(出版商)”最低求助积分说明 661364
邀请新用户注册赠送积分活动 644655