里程计
卡尔曼滤波器
惯性测量装置
计算
计算机科学
激光雷达
扩展卡尔曼滤波器
特征(语言学)
计算机视觉
人工智能
保险丝(电气)
同时定位和映射
迭代函数
维数(图论)
算法
机器人
移动机器人
数学
遥感
工程类
地理
数学分析
哲学
电气工程
语言学
纯数学
出处
期刊:Cornell University - arXiv
日期:2020-01-01
被引量:1
标识
DOI:10.48550/arxiv.2010.08196
摘要
This paper presents a computationally efficient and robust LiDAR-inertial odometry framework. We fuse LiDAR feature points with IMU data using a tightly-coupled iterated extended Kalman filter to allow robust navigation in fast-motion, noisy or cluttered environments where degeneration occurs. To lower the computation load in the presence of large number of measurements, we present a new formula to compute the Kalman gain. The new formula has computation load depending on the state dimension instead of the measurement dimension. The proposed method and its implementation are tested in various indoor and outdoor environments. In all tests, our method produces reliable navigation results in real-time: running on a quadrotor onboard computer, it fuses more than 1,200 effective feature points in a scan and completes all iterations of an iEKF step within 25 ms. Our codes are open-sourced on Github.
科研通智能强力驱动
Strongly Powered by AbleSci AI