Early identification of patients with acute gastrointestinal bleeding using natural language processing and decision rules

急诊分诊台 医学 人工智能 置信区间 急诊科 机器学习 临床决策支持系统 医学诊断 决策支持系统 数据挖掘 自然语言处理 计算机科学 医疗急救 内科学 放射科 精神科
作者
Dennis Shung,Cynthia Tsay,Loren Laine,David Chang,Fan Li,Prem Thomas,Caitlin Partridge,Michael Simonov,Allen Hsiao,J. Kenneth Tay,Richard A. Taylor
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:36 (6): 1590-1597 被引量:12
标识
DOI:10.1111/jgh.15313
摘要

Guidelines recommend risk stratification scores in patients presenting with gastrointestinal bleeding (GIB), but such scores are uncommonly employed in practice. Automation and deployment of risk stratification scores in real time within electronic health records (EHRs) would overcome a major impediment. This requires an automated mechanism to accurately identify ("phenotype") patients with GIB at the time of presentation. The goal is to identify patients with acute GIB by developing and evaluating EHR-based phenotyping algorithms for emergency department (ED) patients.We specified criteria using structured data elements to create rules for identifying patients and also developed multiple natural language processing (NLP)-based approaches for automated phenotyping of patients, tested them with tenfold cross-validation for 10 iterations (n = 7144) and external validation (n = 2988) and compared them with a standard method to identify patient conditions, the Systematized Nomenclature of Medicine. The gold standard for GIB diagnosis was the independent dual manual review of medical records. The primary outcome was the positive predictive value.A decision rule using GIB-specific terms from ED triage and ED review-of-systems assessment performed better than the Systematized Nomenclature of Medicine on internal validation and external validation (positive predictive value = 85% confidence interval:83%-87% vs 69% confidence interval:66%-72%; P < 0.001). The syntax-based NLP algorithm and Bidirectional Encoder Representation from Transformers neural network-based NLP algorithm had similar performance to the structured-data fields decision rule.An automated decision rule employing GIB-specific triage and review-of-systems terms can be used to trigger EHR-based deployment of risk stratification models to guide clinical decision making in real time for patients with acute GIB presenting to the ED.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的伊发布了新的文献求助10
2秒前
2秒前
pangboo发布了新的文献求助10
6秒前
阿德利企鹅完成签到 ,获得积分10
7秒前
科研鲁宾孙完成签到,获得积分20
9秒前
athena关注了科研通微信公众号
9秒前
ning完成签到,获得积分10
10秒前
12秒前
14秒前
15秒前
小蘑菇应助柳易槐采纳,获得10
16秒前
Johnny0912完成签到,获得积分10
17秒前
赘婿应助玩家采纳,获得10
18秒前
18秒前
19秒前
19秒前
852应助ira采纳,获得10
22秒前
chitin chu完成签到,获得积分10
22秒前
22秒前
多多发布了新的文献求助10
23秒前
24秒前
26秒前
Akim应助诸岩采纳,获得10
26秒前
叶琳完成签到 ,获得积分10
27秒前
Bake完成签到,获得积分10
27秒前
freya发布了新的文献求助10
28秒前
29秒前
科研通AI2S应助111采纳,获得10
29秒前
五道口植树学院完成签到,获得积分20
30秒前
redamancy完成签到 ,获得积分10
32秒前
bierbia发布了新的文献求助10
33秒前
FashionBoy应助Bake采纳,获得10
33秒前
在水一方应助自觉的柜子采纳,获得10
34秒前
34秒前
35秒前
35秒前
ding应助靓丽的飞槐采纳,获得10
38秒前
斯文败类应助等乙天采纳,获得10
39秒前
39秒前
幸福大白发布了新的文献求助10
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787759
关于积分的说明 7783069
捐赠科研通 2443822
什么是DOI,文献DOI怎么找? 1299439
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954