Early identification of patients with acute gastrointestinal bleeding using natural language processing and decision rules

急诊分诊台 医学 人工智能 置信区间 急诊科 机器学习 临床决策支持系统 医学诊断 决策支持系统 数据挖掘 自然语言处理 计算机科学 医疗急救 内科学 放射科 精神科
作者
Dennis Shung,Cynthia Tsay,Loren Laine,David Chang,Fan Li,Prem Thomas,Caitlin Partridge,Michael Simonov,Allen Hsiao,J. Kenneth Tay,Richard A. Taylor
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:36 (6): 1590-1597 被引量:12
标识
DOI:10.1111/jgh.15313
摘要

Guidelines recommend risk stratification scores in patients presenting with gastrointestinal bleeding (GIB), but such scores are uncommonly employed in practice. Automation and deployment of risk stratification scores in real time within electronic health records (EHRs) would overcome a major impediment. This requires an automated mechanism to accurately identify ("phenotype") patients with GIB at the time of presentation. The goal is to identify patients with acute GIB by developing and evaluating EHR-based phenotyping algorithms for emergency department (ED) patients.We specified criteria using structured data elements to create rules for identifying patients and also developed multiple natural language processing (NLP)-based approaches for automated phenotyping of patients, tested them with tenfold cross-validation for 10 iterations (n = 7144) and external validation (n = 2988) and compared them with a standard method to identify patient conditions, the Systematized Nomenclature of Medicine. The gold standard for GIB diagnosis was the independent dual manual review of medical records. The primary outcome was the positive predictive value.A decision rule using GIB-specific terms from ED triage and ED review-of-systems assessment performed better than the Systematized Nomenclature of Medicine on internal validation and external validation (positive predictive value = 85% confidence interval:83%-87% vs 69% confidence interval:66%-72%; P < 0.001). The syntax-based NLP algorithm and Bidirectional Encoder Representation from Transformers neural network-based NLP algorithm had similar performance to the structured-data fields decision rule.An automated decision rule employing GIB-specific triage and review-of-systems terms can be used to trigger EHR-based deployment of risk stratification models to guide clinical decision making in real time for patients with acute GIB presenting to the ED.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助雄鹰般的女人采纳,获得10
刚刚
菲菲呀发布了新的文献求助10
1秒前
顾天理发布了新的文献求助10
2秒前
Youmad发布了新的文献求助10
2秒前
3秒前
英姑应助lvv采纳,获得10
3秒前
4秒前
Fushuai完成签到,获得积分10
4秒前
完美世界应助摩登兄弟采纳,获得10
5秒前
WD关闭了WD文献求助
5秒前
有足量NaCl发布了新的文献求助10
6秒前
hhh发布了新的文献求助10
7秒前
iNk应助Carho采纳,获得20
7秒前
LMBE1K完成签到 ,获得积分10
8秒前
认真摆烂完成签到,获得积分10
9秒前
H7发布了新的文献求助10
9秒前
知音有畅发布了新的文献求助10
9秒前
苏三三发布了新的文献求助10
10秒前
10秒前
12秒前
糯米锤发布了新的文献求助10
14秒前
yi完成签到,获得积分10
15秒前
15秒前
Rondab应助Snow采纳,获得10
16秒前
H7完成签到,获得积分10
17秒前
墨染锦年完成签到,获得积分10
17秒前
哈哈哈kk完成签到,获得积分10
18秒前
情怀应助1177采纳,获得10
18秒前
18秒前
18秒前
18秒前
lvv发布了新的文献求助10
19秒前
123hkd发布了新的文献求助10
19秒前
顾天理完成签到,获得积分10
19秒前
奋斗的珍完成签到,获得积分10
19秒前
zrd发布了新的文献求助10
20秒前
20秒前
哦啦啦完成签到,获得积分10
20秒前
wanwan应助wengi94采纳,获得10
21秒前
钮南琴完成签到,获得积分10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992152
求助须知:如何正确求助?哪些是违规求助? 3533140
关于积分的说明 11261281
捐赠科研通 3272545
什么是DOI,文献DOI怎么找? 1805855
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809439