DTDR–ALSTM: Extracting dynamic time-delays to reconstruct multivariate data for improving attention-based LSTM industrial time series prediction models

计算机科学 多元统计 过程(计算) 时间序列 人工智能 数据挖掘 时态数据库 钥匙(锁) 机器学习 模式识别(心理学) 计算机安全 操作系统
作者
Jince Li,Bo Yang,Hongguang Li,Yongjian Wang,Qi Chu,Yi Liu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:211: 106508-106508 被引量:41
标识
DOI:10.1016/j.knosys.2020.106508
摘要

Taking advantage of varying degrees of attention on specific features, attention-based long short-term memory (ALSTM) networks have made inroads into the industrial multivariate time series prediction sector recently. However, conventional ALSTM models usually employ static time-delays to constant select input/output pairings of multivariate data, which apparently ignores dynamics of transmission time between industrial process variables and degrades the prediction performance by incorrectly extracting process characteristics. In response to this problem, this paper proposes a novel approach to extracting dynamic time-delays to reconstruct (DTDR) multivariate data for an improved ALSTM prediction model. Therein, the temporal locations and spans of multivariate data are adaptively tailored to input/output pairings of the ALSTM network according to the dynamic time-delays. Specifically, the multivariate data can be accurately matched in temporal positions, and the data information in the original temporal spans with Status transfer time abnormal are replaced. Consequently, this prediction model not only appropriately utilizes dynamics between the predicting and correlated variables, but also makes better attentions on key features extracted from optimum data. Applied to industrial distillation and methanol production processes, the proposed method demonstrates the capability of significantly improving network training speeds as well as prediction accuracies in contrast to static time-delay based ALSTM and LSTM models, expecting even more applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助hobowei采纳,获得10
1秒前
可爱奇异果完成签到 ,获得积分10
1秒前
wang发布了新的文献求助10
2秒前
太空人完成签到,获得积分10
2秒前
123发布了新的文献求助10
3秒前
4秒前
该睡觉啦完成签到,获得积分20
4秒前
4秒前
莫x莫完成签到 ,获得积分10
6秒前
loewy完成签到,获得积分10
6秒前
黄婷发布了新的文献求助10
6秒前
6秒前
yuan完成签到,获得积分10
6秒前
zho发布了新的文献求助10
6秒前
6秒前
苏苏完成签到,获得积分10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得80
7秒前
Hello应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
万能图书馆应助内向秋寒采纳,获得10
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
zzzq应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得30
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
soso应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
8秒前
orixero应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794