DTDR–ALSTM: Extracting dynamic time-delays to reconstruct multivariate data for improving attention-based LSTM industrial time series prediction models

计算机科学 多元统计 过程(计算) 时间序列 人工智能 数据挖掘 时态数据库 钥匙(锁) 机器学习 模式识别(心理学) 计算机安全 操作系统
作者
Jince Li,Bo Yang,Hongguang Li,Yongjian Wang,Qi Chu,Yi Liu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:211: 106508-106508 被引量:41
标识
DOI:10.1016/j.knosys.2020.106508
摘要

Taking advantage of varying degrees of attention on specific features, attention-based long short-term memory (ALSTM) networks have made inroads into the industrial multivariate time series prediction sector recently. However, conventional ALSTM models usually employ static time-delays to constant select input/output pairings of multivariate data, which apparently ignores dynamics of transmission time between industrial process variables and degrades the prediction performance by incorrectly extracting process characteristics. In response to this problem, this paper proposes a novel approach to extracting dynamic time-delays to reconstruct (DTDR) multivariate data for an improved ALSTM prediction model. Therein, the temporal locations and spans of multivariate data are adaptively tailored to input/output pairings of the ALSTM network according to the dynamic time-delays. Specifically, the multivariate data can be accurately matched in temporal positions, and the data information in the original temporal spans with Status transfer time abnormal are replaced. Consequently, this prediction model not only appropriately utilizes dynamics between the predicting and correlated variables, but also makes better attentions on key features extracted from optimum data. Applied to industrial distillation and methanol production processes, the proposed method demonstrates the capability of significantly improving network training speeds as well as prediction accuracies in contrast to static time-delay based ALSTM and LSTM models, expecting even more applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YANYAN完成签到,获得积分10
刚刚
1秒前
kingcoming发布了新的文献求助10
1秒前
2秒前
WW完成签到,获得积分10
2秒前
3秒前
柯一一应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
是温柔本身完成签到,获得积分10
5秒前
打打应助科研通管家采纳,获得10
5秒前
吃猫的鱼发布了新的文献求助10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
柯一一应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
5秒前
柯一一应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
6秒前
柯一一应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
洪婉馨发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
善学以致用应助wen采纳,获得10
9秒前
江上清风游完成签到,获得积分10
11秒前
任性萝关注了科研通微信公众号
13秒前
chaowei发布了新的文献求助10
13秒前
小饼干完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959733
求助须知:如何正确求助?哪些是违规求助? 3505997
关于积分的说明 11127227
捐赠科研通 3237941
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871726
科研通“疑难数据库(出版商)”最低求助积分说明 803000