DTDR–ALSTM: Extracting dynamic time-delays to reconstruct multivariate data for improving attention-based LSTM industrial time series prediction models

计算机科学 多元统计 过程(计算) 时间序列 人工智能 数据挖掘 时态数据库 钥匙(锁) 机器学习 模式识别(心理学) 计算机安全 操作系统
作者
Jince Li,Bo Yang,Hongguang Li,Yongjian Wang,Qi Chu,Yi Liu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:211: 106508-106508 被引量:41
标识
DOI:10.1016/j.knosys.2020.106508
摘要

Taking advantage of varying degrees of attention on specific features, attention-based long short-term memory (ALSTM) networks have made inroads into the industrial multivariate time series prediction sector recently. However, conventional ALSTM models usually employ static time-delays to constant select input/output pairings of multivariate data, which apparently ignores dynamics of transmission time between industrial process variables and degrades the prediction performance by incorrectly extracting process characteristics. In response to this problem, this paper proposes a novel approach to extracting dynamic time-delays to reconstruct (DTDR) multivariate data for an improved ALSTM prediction model. Therein, the temporal locations and spans of multivariate data are adaptively tailored to input/output pairings of the ALSTM network according to the dynamic time-delays. Specifically, the multivariate data can be accurately matched in temporal positions, and the data information in the original temporal spans with Status transfer time abnormal are replaced. Consequently, this prediction model not only appropriately utilizes dynamics between the predicting and correlated variables, but also makes better attentions on key features extracted from optimum data. Applied to industrial distillation and methanol production processes, the proposed method demonstrates the capability of significantly improving network training speeds as well as prediction accuracies in contrast to static time-delay based ALSTM and LSTM models, expecting even more applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱朱叹气完成签到,获得积分10
1秒前
Ex0dus发布了新的文献求助10
1秒前
ddd完成签到,获得积分10
2秒前
2秒前
2秒前
西奥发布了新的文献求助10
3秒前
Yorshka完成签到,获得积分10
4秒前
4秒前
呵呵发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
田様应助dddnnn采纳,获得10
6秒前
8o7XJ7发布了新的文献求助30
7秒前
long应助杨丽采纳,获得10
7秒前
lilili应助杨丽采纳,获得10
7秒前
无花果应助霍健霏采纳,获得10
8秒前
zoe666发布了新的文献求助30
8秒前
LamChem发布了新的文献求助10
8秒前
8秒前
fyc完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
Yuenyee应助123采纳,获得10
11秒前
12秒前
勤恳靖巧发布了新的文献求助10
13秒前
JamesPei应助lcc采纳,获得10
14秒前
幸运星完成签到,获得积分10
15秒前
清风完成签到 ,获得积分10
15秒前
15秒前
丘比特应助大白采纳,获得10
15秒前
晨曦曦完成签到 ,获得积分10
16秒前
17秒前
贝贝发布了新的文献求助10
17秒前
18秒前
19秒前
Orange应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125011
求助须知:如何正确求助?哪些是违规求助? 4329012
关于积分的说明 13489539
捐赠科研通 4163648
什么是DOI,文献DOI怎么找? 2282463
邀请新用户注册赠送积分活动 1283623
关于科研通互助平台的介绍 1222905