A Method to Realize Low Velocity Movability and Eliminate Friction Induced Noise in Piezoelectric Ultrasonic Motors

超声波电动机 滑块 定子 压电马达 声学 振动器(电子) 压电 振动 控制理论(社会学) 非线性系统 工程类 物理 计算机科学 机械工程 人工智能 控制(管理) 量子力学
作者
Bülent Delibas,Burhanettin Koc
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 2677-2687 被引量:37
标识
DOI:10.1109/tmech.2020.2984367
摘要

In a piezoelectric ultrasonic motor (USM) or resonance drive type piezoelectric motor (RPM), movement is generated between a vibrator (stator) and a slider (rotor). Since the microscopic vibrations on a stator are transferred to a slider through friction interaction, the movement of a slider has a nonlinear characteristic due to the nature of the friction force. This nonlinear behavior causes large position errors due to the occurrence of discontinuous stick-slip movements and unpleasant audible noise, especially at a low velocity drive. This friction induced acoustic sound is magnified at low velocities as the natural frequency of the mechanical system of a piezoelectric motor with mass and the holding and prestress spring forces are dependent on the closed loop motion controller. This article addresses the abovementioned issues. First, a mechanical model, which considers the nature of movements in a resonance drive type piezoelectric motor, was established. The model could suitably define the friction induced forced vibration and noise source. Second, a new driving method for resonance drive type piezoelectric motors was proposed, in which the piezoelectric vibrator was excited using two driving sources at two different frequencies. The difference between the two excitation frequencies was synchronized to the servo sampling frequency of the digital control unit. Finally, the performance of the proposed driving method was compared with those of the conventional driving methods. It was noted that in addition to the realization of silent and smooth low velocity movements, the positioning error for the linear movements between the desired and actual positions decreased to less than 10 nm for velocities ranging from 1 to 0.001 mm/s.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助Dave采纳,获得10
刚刚
顺利的雪莲完成签到 ,获得积分10
1秒前
Benjamin发布了新的文献求助10
1秒前
1秒前
晚星完成签到,获得积分10
1秒前
无无无发布了新的文献求助10
2秒前
热情嘉懿发布了新的文献求助10
2秒前
可爱的函函应助陈晚拧采纳,获得10
2秒前
pmeng发布了新的文献求助10
2秒前
醉熏的书易关注了科研通微信公众号
3秒前
付银薇完成签到,获得积分10
3秒前
田様应助Chenchuanpeng采纳,获得10
4秒前
帆帆牛完成签到,获得积分10
4秒前
陈叉叉完成签到 ,获得积分10
4秒前
WN完成签到,获得积分10
4秒前
4秒前
张萌洁发布了新的文献求助10
5秒前
5秒前
YoKo完成签到,获得积分10
5秒前
候鸟发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
科研通AI6应助王楠楠采纳,获得10
7秒前
cai完成签到,获得积分10
7秒前
Mmmmmm完成签到,获得积分10
7秒前
贰什柒完成签到,获得积分10
8秒前
阿雷发布了新的文献求助10
9秒前
10秒前
gentille完成签到,获得积分10
10秒前
Sandy完成签到,获得积分10
10秒前
10秒前
10秒前
贰什柒发布了新的文献求助10
10秒前
谦让安双完成签到,获得积分10
10秒前
pmeng完成签到,获得积分10
11秒前
123应助龚昊采纳,获得10
11秒前
白沙叶完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503