材料科学
锂(药物)
金属
过电位
电极
成核
石墨
箔法
化学工程
阳极
电化学
无机化学
复合材料
冶金
化学
工程类
内分泌学
物理化学
有机化学
医学
作者
Killian R. Tallman,Shan Yan,Calvin D. Quilty,Alyson Abraham,Alison H. McCarthy,Amy C. Marschilok,Kenneth J. Takeuchi,Esther S. Takeuchi,David C. Bock
出处
期刊:Journal of The Electrochemical Society
[The Electrochemical Society]
日期:2020-11-16
卷期号:167 (16): 160503-160503
被引量:13
标识
DOI:10.1149/1945-7111/abcaba
摘要
A primary barrier preventing repetitive fast charging of Li-ion batteries is lithium metal plating at the graphite anode. One approach toward mitigating Li metal deposition is the deliberate modification of the graphite anode surface with materials demonstrating high overpotentials unfavorable for Li metal nucleation, such as Ni or Cu nanoscale films. This research explores Ni and Cu surface coatings at different areal loadings (3 or 11 μ g cm −2 ) on the electrochemistry of graphite/LiNi 0.6 Mn 0.2 Co 0.2 O 2 (NMC622) type Li-ion batteries. Extended galvanostatic cycling of control and metal-coated electrodes in graphite/NMC622 pouch cells are conducted under high rate conditions. Based on the overpotential of Li deposition on metal foil, both Ni and Cu treatments were anticipated to result in reduced lithium deposition. The higher metal film loadings of 11 μ g cm −2 Ni- or Cu-coated electrodes exhibit the highest capacity retention after 500 cycles, with mean improvements of 8% and 9%, respectively, over uncoated graphite electrodes. Li plating quantified by X-ray diffraction indicates that the metal films effectively reduce the quantity of plated Li compared to untreated electrodes, with 11 μ g cm −2 Cu providing the greatest benefit.
科研通智能强力驱动
Strongly Powered by AbleSci AI